University of Hertfordshire

A dual-wavelength single particle aerosol fluorescence monitor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

View graph of relations
Original languageEnglish
Title of host publicationProcs SPIE
Subtitle of host publicationOptically Based Biological and Chemical Sensing, and Optically Based Materials for Defence II
EditorsJ.C. Carrano, A. Zukauskas
Pages59900N-1 to 59900N-12
Volume5990
DOIs
Publication statusPublished - 2005

Abstract

Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 10^4 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

Notes

Original article can be found at: http://spie.org/x306.xml Copyright SPIE DOI: 10.1117/12.629868 [Full text of this article is not available in the UHRA]

ID: 2175348