University of Hertfordshire

From the same journal

By the same authors

AD Leonis: Radial velocity signal of stellar rotation or spin-orbit resonance?

Research output: Contribution to journalArticle

Documents

  • Mikko Tuomi
  • Hugh R. A. Jones
  • Guillem Anglada-Escudé
  • R. Paul Butler
  • Marcin Kiraga
  • Steven S. Vogt
View graph of relations
Original languageEnglish
Article number192
Number of pages17
Pages (from-to)192
JournalAstronomical Journal
Journal publication date16 Apr 2018
Volume155
Issue5
DOIs
Publication statusPublished - 16 Apr 2018

Abstract

AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin-orbit resonance. For such a scenario and no spin-orbit misalignment, the measured indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

Notes

This is an Open Access article. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

ID: 13565235