University of Hertfordshire

Documents

  • Meriam Gay Bautista
  • He Zhu
  • Xi Zhu
  • Yang Yang
  • Yichuang Sun
  • Eryk Dutkiewicz
View graph of relations
Original languageEnglish
Article number8637960
Number of pages10
Pages (from-to)3064-3073
JournalIEEE Transactions on Microwave Theory and Techniques
Journal publication date8 Feb 2019
Volume67
Issue7
DOIs
Publication statusPublished - 8 Feb 2019

Abstract

A design methodology for a compact millimeter-wave on-chip bandpass filter (BPF) is presented in this paper. Unlike the previously published works in the literature, the presented method is based on quasi-lumped elements, which consists of a resonator with enhanced self-coupling and metal-insulator-metal capacitors. Thus, this approach provides inherently compact designs comparing with the conventional distributed elements-based ones. To fully understand the insight of the approach, simplified LC-equivalent circuit models are developed. To further demonstrate the feasibility of using this approach in practice, the resonator and two compact BPFs are designed using the presented models. All three designs are fabricated in a standard 0.13- \mu \text{m} (Bi)-CMOS technology. The measured results show that the resonator can generate a notch at 47 GHz with the attenuation better than 28 dB due to the enhanced self-coupling. The chip size, excluding the pads, is only 0.096 \times 0.294 mm 2. In addition, using the resonator for BPF designs, the first BPF has one transmission zero at 58 GHz with a peak attenuation of 23 dB. The center frequency of this filter is 27 GHz with an insertion loss of 2.5 dB, while the return loss is better than 10 dB from 26 to 31 GHz. The second BPF has two transmission zeros, and a minimum insertion loss of 3.5 dB is found at 29 GHz, while the return loss is better than 10 dB from 26 GHz to 34 GHz. Also, more than 20-dB stopband attenuation is achieved from dc to 20.5 GHz and from 48 to 67 GHz. The chip sizes of these two BPFs, excluding the pads, are only 0.076\times 0.296 mm 2 and 0.096\times 0.296 mm 2, respectively.

Notes

© 2019 IEEE.

ID: 16492806