University of Hertfordshire

Documents

View graph of relations
Original languageEnglish
Number of pages15
Pages (from-to)674-688
JournalNeoplasia
Journal publication date1 Nov 2016
Volume18
Issue11
Early online date18 Oct 2016
DOIs
Publication statusPublished - 1 Nov 2016

Abstract

Hu-antigen R (HuR) is an RNA-binding posttranscriptional regulator that belongs to the Hu/ELAV family. HuR expression levels are modulated by a variety of proteins, microRNAs, chemical compounds, or the microenvironment, and in turn, HuR affects mRNA stability and translation of various genes implicated in breast cancer formation, progression, metastasis, and treatment. The aim of the present review is to critically summarize the role of HuR in breast cancer development and its potential as a prognosticator and a therapeutic target. In this aspect, all the existing English literature concerning HuR expression and function in breast cancer cell lines, in vivo animal models, and clinical studies is critically presented and summarized. HuR modulates many genes implicated in biological processes crucial for breast cancer formation, growth, and metastasis, whereas the link between HuR and these processes has been demonstrated directly in vitro and in vivo. Additionally, clinical studies reveal that HuR is associated with more aggressive forms of breast cancer and is a putative prognosticator for patients' survival. All the above indicate HuR as a promising drug target for cancer therapy; nevertheless, additional studies are required to fully understand its potential and determine against which types of breast cancer and at which stage of the disease a therapeutic agent targeting HuR would be more effective.

Notes

This is the Accepted Manuscript version of the following article, "Ioly Kotta-Loizou, et al., “Current Evidence and Future Perspectives on HuR and Breast Cancer Development, Prognosis, and Treatment”, Neoplasia, Vol. 18(11): 674-688, October 2016." The final published version is available at:https://doi.org/10.1016/j.neo.2016.09.002 Copyright © 2016, Elsevier.

ID: 10685193