University of Hertfordshire

Documents

View graph of relations
Original languageEnglish
Article number 10.1109/TMTT.2019.2947668
Number of pages11
JournalIEEE Transactions on Microwave Theory and Techniques
DOIs
Publication statusPublished - 5 Nov 2019

Abstract

A system approach for a power-scalable analog baseband (ABB) design is presented in this article. Using this approach, the energy efficiency of an ABB can be maximized without compromising any other important specifications. To fulfill the feasibility study, a switchable-order gm-C lowpass filter (LPF) along with a voltage-controlled programmable-gain amplifier (VC-PGA) is designed. The selectivity of the LPF can be linearly scaled with power consumption. In addition, the power consumption of VC-PGA has a binary-weighted manner. In contrast to conventional PGAs, the gain step of the designed PGA can be continuously tuned by a control voltage. To prove the concept, the ABB is implemented in 65-nm CMOS technology. The measurements show that the frequency responses of the ABB can be configured as either fifth or seventh order with 16 gain steps. The bandwidth is approximately 50 MHz for all cases, and the gain step can be continuously tuned between 0 and 3 dB. At the high-gain mode, the output third-order intercept point and the input-referred noise of the LPF and PGA are approximate to be 8 dBm and 5 nV/sqrt Hz, respectively. The maximum power consumption of the ABB, excluding the output buffer, is approximately 19.8 mW with a 1.2-V supply voltage. The die area, excluding the pads, is only 0.18 mm².

Notes

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ID: 17828149