University of Hertfordshire

Documents

  • My_Artical

    Accepted author manuscript, 2 MB, PDF document

  • Mohamed Elforjani
View graph of relations
Original languageEnglish
JournalStructural Health Monitoring
Journal publication date28 Apr 2017
DOIs
Publication statusE-pub ahead of print - 28 Apr 2017

Abstract

The monitoring and diagnosis of rolling element bearings with acoustic emission and vibration measurements has evolved as one of the much used techniques for condition monitoring and diagnosis of rotating machinery. Furthermore, recent developments indicate the drive toward integration of diagnosis and prognosis algorithms in future integrated machine health management systems. With this in mind, this article is an experimental study of slow speed bearings in a starved lubricated contact. It investigates the influence of grease starvation conditions on detection and monitoring natural defect initiation and propagation using acoustic emission approach. The experiments are also aimed at a comparison of results acquired by acoustic emission and vibration diagnosis on full-scale axial bearing. In addition to this, the article concentrates on the estimation of the remaining useful life for bearings while in operation. To implement this, a multilayer artificial neural network model has been proposed to correlate the selected acoustic emission features with corresponding bearing wear throughout laboratory experiments. Experiments confirm that the obtained results were promising and selecting this appropriate signal processing technique can significantly affect the defect identification.

Notes

This document is the Accepted Manuscript version. The final, definitive version of this paper has been published in Structural Health Monitoring, April 2017, DOI: https://doi.org/10.1177/1475921717704620, published by SAGE Publishing, All rights reserved.

ID: 11996576