University of Hertfordshire

From the same journal

By the same authors

Documents

  • sun-aam

    Accepted author manuscript, 1 MB, PDF-document

View graph of relations
Original languageEnglish
Number of pages13
Pages (from-to)667-679
JournalIEEE Transactions on Instrumentation and Measurement
Journal publication date1 Mar 2019
Volume68
Issue3
Early online date27 Jul 2018
DOIs
Publication statusPublished - 1 Mar 2019

Abstract

Efficient defect classification is one of the most important preconditions to achieve online quality inspection for hot-rolled strip steels. It is extremely challenging owing to various defect appearances, large intraclass variation, ambiguous interclass distance, and unstable gray values. In this paper, a generalized completed local binary patterns (GCLBP) framework is proposed. Two variants of improved completed local binary patterns (ICLBP) and improved completed noise-invariant local-structure patterns (ICNLP) under the GCLBP framework are developed for steel surface defect classification. Different from conventional local binary patterns variants, descriptive information hidden in nonuniform patterns is innovatively excavated for the better defect representation. This paper focuses on the following aspects. First, a lightweight searching algorithm is established for exploiting the dominant nonuniform patterns (DNUPs). Second, a hybrid pattern code mapping mechanism is proposed to encode all the uniform patterns and DNUPs. Third, feature extraction is carried out under the GCLBP framework. Finally, histogram matching is efficiently accomplished by simple nearest-neighbor classifier. The classification accuracy and time efficiency are verified on a widely recognized texture database (Outex) and a real-world steel surface defect database [Northeastern University (NEU)]. The experimental results promise that the proposed method can be widely applied in online automatic optical inspection instruments for hot-rolled strip steel.

Notes

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.

ID: 15149647