University of Hertfordshire

From the same journal

From the same journal

By the same authors

Documents

  • 904906

    Submitted manuscript, 952 KB, PDF-document

  • M.J. Jarvis
  • T. Mauch
  • J. H. Y. Ching
  • S. M. Croom
  • E.M. Sadler
  • J.S. Virdee
  • M. Baes
  • Ivan K. Baldry
  • S. Brough
  • A. Cooray
  • A. Dariush
  • R. Hopwood
  • G. de Zotti
  • S. Driver
  • A. S. G. Robotham
  • L. Dunne
  • S. Maddox
  • S. Dye
  • S. Eales
  • E. Valiante
  • J. Liske
  • M. J. Michałowski
  • E.E. Rigby
  • O. Steele
  • D. Thomas
View graph of relations
Original languageEnglish
Number of pages18
Pages (from-to)2407-2424
JournalMonthly Notices of the Royal Astronomical Society
Journal publication dateMar 2013
Volume429
Issue3
DOIs
StatePublished - Mar 2013

Abstract

We have constructed a sample of radio-loud objects with optical spectroscopy from the Galaxy and Mass Assembly (GAMA) project over the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS) Phase 1 fields. Classifying the radio sources in terms of their optical spectra, we find that strong-emission-line sources ('high-excitation radio galaxies') have, on average, a factor of ~4 higher 250-μm Herschel luminosity than weak-line ('lowexcitation') radio galaxies and are also more luminous than magnitude-matched radio-quiet galaxies at the same redshift. Using all five H-ATLAS bands, we show that this difference in luminosity between the emission-line classes arises mostly from a difference in the average dust temperature; strong-emission-line sources tend to have comparable dust masses to, but higher dust temperatures than, radio galaxies with weak emission lines. We interpret this as showing that radio galaxies with strong nuclear emission lines are much more likely to be associated with star formation in their host galaxy, although there is certainly not a one-to-one relationship between star formation and strong-line active galactic nuclei (AGN) activity. The strong-line sources are estimated to have star formation rates at least a factor of 3-4 higher than those in the weak-line objects. Our conclusion is consistent with earlier work, generally carried out using much smaller samples, and reinforces the general picture of high-excitation radio galaxies as being located in lower-mass, less evolved host galaxies than their low-excitation counterparts.

ID: 1800344