University of Hertfordshire

Standard

Ionospheric modelling using GPS to calibrate the MWA. 1 : Comparison of first order ionospheric effects between GPS models and MWA observations. / Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bhat, R.; Briggs, F.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B. -Q.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapińska, A. D.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A. R.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

In: Publications of the Astronomical Society of Australia, Vol. 32, e029, 10.08.2015.

Research output: Contribution to journalArticle

Harvard

Arora, BS, Morgan, J, Ord, SM, Tingay, SJ, Hurley-Walker, N, Bell, M, Bernardi, G, Bhat, R, Briggs, F, Callingham, JR, Deshpande, AA, Dwarakanath, KS, Ewall-Wice, A, Feng, L, For, B-Q, Hancock, P, Hazelton, BJ, Hindson, L, Jacobs, D, Johnston-Hollitt, M, Kapińska, AD, Kudryavtseva, N, Lenc, E, McKinley, B, Mitchell, D, Oberoi, D, Offringa, AR, Pindor, B, Procopio, P, Riding, J, Staveley-Smith, L, Wayth, RB, Wu, C, Zheng, Q, Bowman, JD, Cappallo, RJ, Corey, BE, Emrich, D, Goeke, R, Greenhill, LJ, Kaplan, DL, Kasper, JC, Kratzenberg, E, Lonsdale, CJ, Lynch, MJ, McWhirter, SR, Morales, MF, Morgan, E, Prabu, T, Rogers, AEE, Roshi, A, Shankar, NU, Srivani, KS, Subrahmanyan, R, Waterson, M, Webster, RL, Whitney, AR, Williams, A & Williams, CL 2015, 'Ionospheric modelling using GPS to calibrate the MWA. 1: Comparison of first order ionospheric effects between GPS models and MWA observations', Publications of the Astronomical Society of Australia, vol. 32, e029. https://doi.org/10.1017/pasa.2015.29

APA

Vancouver

Author

Arora, B. S. ; Morgan, J. ; Ord, S. M. ; Tingay, S. J. ; Hurley-Walker, N. ; Bell, M. ; Bernardi, G. ; Bhat, R. ; Briggs, F. ; Callingham, J. R. ; Deshpande, A. A. ; Dwarakanath, K. S. ; Ewall-Wice, A. ; Feng, L. ; For, B. -Q. ; Hancock, P. ; Hazelton, B. J. ; Hindson, L. ; Jacobs, D. ; Johnston-Hollitt, M. ; Kapińska, A. D. ; Kudryavtseva, N. ; Lenc, E. ; McKinley, B. ; Mitchell, D. ; Oberoi, D. ; Offringa, A. R. ; Pindor, B. ; Procopio, P. ; Riding, J. ; Staveley-Smith, L. ; Wayth, R. B. ; Wu, C. ; Zheng, Q. ; Bowman, J. D. ; Cappallo, R. J. ; Corey, B. E. ; Emrich, D. ; Goeke, R. ; Greenhill, L. J. ; Kaplan, D. L. ; Kasper, J. C. ; Kratzenberg, E. ; Lonsdale, C. J. ; Lynch, M. J. ; McWhirter, S. R. ; Morales, M. F. ; Morgan, E. ; Prabu, T. ; Rogers, A. E. E. ; Roshi, A. ; Shankar, N. Udaya ; Srivani, K. S. ; Subrahmanyan, R. ; Waterson, M. ; Webster, R. L. ; Whitney, A. R. ; Williams, A. ; Williams, C. L. / Ionospheric modelling using GPS to calibrate the MWA. 1 : Comparison of first order ionospheric effects between GPS models and MWA observations. In: Publications of the Astronomical Society of Australia. 2015 ; Vol. 32.

Bibtex

@article{72b9a4ef7f174959806dfba0ee0417bc,
title = "Ionospheric modelling using GPS to calibrate the MWA. 1: Comparison of first order ionospheric effects between GPS models and MWA observations",
abstract = "We compare first order (refractive) ionospheric effects seen by the Murchison Widefield Array (MWA) with the ionosphere as inferred from Global Positioning System (GPS) data. The first order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the Center for Orbit Determination in Europe (CODE), using data from globally distributed GPS receivers. However, for the more accurate local ionosphere estimates required for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver Differential Code Biases (DCBs). The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling, a requirement for establishing dense GPS networks in arbitrary locations in the vicinity of the MWA. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 minutes. Also the receiver DCBs are estimated for selected Geoscience Australia (GA) GPS receivers, located at Murchison Radio Observatory (MRO1), Yarragadee (YAR3), Mount Magnet (MTMA) and Wiluna (WILU). The ionospheric gradients estimated from GPS are compared with the ionospheric gradients inferred from radio source position shifts observed with the MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.",
keywords = "astro-ph.IM",
author = "Arora, {B. S.} and J. Morgan and Ord, {S. M.} and Tingay, {S. J.} and N. Hurley-Walker and M. Bell and G. Bernardi and R. Bhat and F. Briggs and Callingham, {J. R.} and Deshpande, {A. A.} and Dwarakanath, {K. S.} and A. Ewall-Wice and L. Feng and For, {B. -Q.} and P. Hancock and Hazelton, {B. J.} and L. Hindson and D. Jacobs and M. Johnston-Hollitt and Kapińska, {A. D.} and N. Kudryavtseva and E. Lenc and B. McKinley and D. Mitchell and D. Oberoi and Offringa, {A. R.} and B. Pindor and P. Procopio and J. Riding and L. Staveley-Smith and Wayth, {R. B.} and C. Wu and Q. Zheng and Bowman, {J. D.} and Cappallo, {R. J.} and Corey, {B. E.} and D. Emrich and R. Goeke and Greenhill, {L. J.} and Kaplan, {D. L.} and Kasper, {J. C.} and E. Kratzenberg and Lonsdale, {C. J.} and Lynch, {M. J.} and McWhirter, {S. R.} and Morales, {M. F.} and E. Morgan and T. Prabu and Rogers, {A. E. E.} and A. Roshi and Shankar, {N. Udaya} and Srivani, {K. S.} and R. Subrahmanyan and M. Waterson and Webster, {R. L.} and Whitney, {A. R.} and A. Williams and Williams, {C. L.}",
note = "This document is the Accepted Manuscript version of the following article: B. S. Arora, et al, ‘Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations’, Publications of the Astronomical Society of Australia, Vol. 32, e029, August 2015. The final, published version is available online at doi: https://doi.org/10.1017/pasa.2015.29. COPYRIGHT: {\circledC} Astronomical Society of Australia 2015.",
year = "2015",
month = "8",
day = "10",
doi = "10.1017/pasa.2015.29",
language = "English",
volume = "32",
journal = "Publications of the Astronomical Society of Australia",
issn = "1323-3580",
publisher = "Cambridge University Press",

}

RIS

TY - JOUR

T1 - Ionospheric modelling using GPS to calibrate the MWA. 1

T2 - Comparison of first order ionospheric effects between GPS models and MWA observations

AU - Arora, B. S.

AU - Morgan, J.

AU - Ord, S. M.

AU - Tingay, S. J.

AU - Hurley-Walker, N.

AU - Bell, M.

AU - Bernardi, G.

AU - Bhat, R.

AU - Briggs, F.

AU - Callingham, J. R.

AU - Deshpande, A. A.

AU - Dwarakanath, K. S.

AU - Ewall-Wice, A.

AU - Feng, L.

AU - For, B. -Q.

AU - Hancock, P.

AU - Hazelton, B. J.

AU - Hindson, L.

AU - Jacobs, D.

AU - Johnston-Hollitt, M.

AU - Kapińska, A. D.

AU - Kudryavtseva, N.

AU - Lenc, E.

AU - McKinley, B.

AU - Mitchell, D.

AU - Oberoi, D.

AU - Offringa, A. R.

AU - Pindor, B.

AU - Procopio, P.

AU - Riding, J.

AU - Staveley-Smith, L.

AU - Wayth, R. B.

AU - Wu, C.

AU - Zheng, Q.

AU - Bowman, J. D.

AU - Cappallo, R. J.

AU - Corey, B. E.

AU - Emrich, D.

AU - Goeke, R.

AU - Greenhill, L. J.

AU - Kaplan, D. L.

AU - Kasper, J. C.

AU - Kratzenberg, E.

AU - Lonsdale, C. J.

AU - Lynch, M. J.

AU - McWhirter, S. R.

AU - Morales, M. F.

AU - Morgan, E.

AU - Prabu, T.

AU - Rogers, A. E. E.

AU - Roshi, A.

AU - Shankar, N. Udaya

AU - Srivani, K. S.

AU - Subrahmanyan, R.

AU - Waterson, M.

AU - Webster, R. L.

AU - Whitney, A. R.

AU - Williams, A.

AU - Williams, C. L.

N1 - This document is the Accepted Manuscript version of the following article: B. S. Arora, et al, ‘Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations’, Publications of the Astronomical Society of Australia, Vol. 32, e029, August 2015. The final, published version is available online at doi: https://doi.org/10.1017/pasa.2015.29. COPYRIGHT: © Astronomical Society of Australia 2015.

PY - 2015/8/10

Y1 - 2015/8/10

N2 - We compare first order (refractive) ionospheric effects seen by the Murchison Widefield Array (MWA) with the ionosphere as inferred from Global Positioning System (GPS) data. The first order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the Center for Orbit Determination in Europe (CODE), using data from globally distributed GPS receivers. However, for the more accurate local ionosphere estimates required for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver Differential Code Biases (DCBs). The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling, a requirement for establishing dense GPS networks in arbitrary locations in the vicinity of the MWA. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 minutes. Also the receiver DCBs are estimated for selected Geoscience Australia (GA) GPS receivers, located at Murchison Radio Observatory (MRO1), Yarragadee (YAR3), Mount Magnet (MTMA) and Wiluna (WILU). The ionospheric gradients estimated from GPS are compared with the ionospheric gradients inferred from radio source position shifts observed with the MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

AB - We compare first order (refractive) ionospheric effects seen by the Murchison Widefield Array (MWA) with the ionosphere as inferred from Global Positioning System (GPS) data. The first order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the Center for Orbit Determination in Europe (CODE), using data from globally distributed GPS receivers. However, for the more accurate local ionosphere estimates required for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver Differential Code Biases (DCBs). The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling, a requirement for establishing dense GPS networks in arbitrary locations in the vicinity of the MWA. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 minutes. Also the receiver DCBs are estimated for selected Geoscience Australia (GA) GPS receivers, located at Murchison Radio Observatory (MRO1), Yarragadee (YAR3), Mount Magnet (MTMA) and Wiluna (WILU). The ionospheric gradients estimated from GPS are compared with the ionospheric gradients inferred from radio source position shifts observed with the MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

KW - astro-ph.IM

U2 - 10.1017/pasa.2015.29

DO - 10.1017/pasa.2015.29

M3 - Article

VL - 32

JO - Publications of the Astronomical Society of Australia

JF - Publications of the Astronomical Society of Australia

SN - 1323-3580

M1 - e029

ER -