University of Hertfordshire

From the same journal

By the same authors

View graph of relations
Original languageEnglish
Pages (from-to)319 - 338
JournalIEEE Transactions on Evolutionary Computation
Journal publication date17 Oct 2011
Volume16
Issue3
DOIs
Publication statusPublished - 17 Oct 2011

Abstract

The fitness landscape of MAX-3-SAT is investigated for random instances above the satisfiability phase transition. This paper includes a scaling analysis of the time to reach a local optimum, the number of local optima, the expected probability of reaching a local optimum as a function of its fitness, the expected fitness found by local search and the best fitness, the probability of reaching a global optimum, the size and relative positions of the global optima, the mean distance between the local and global optima, the expected fitness as a function of the Hamming distance from an optimum and their basins of attraction. These analyses show why the problem becomes hard for local search algorithms as the system size increases. The paper also shows how a recently proposed algorithm can exploit long-range correlations in the fitness landscape to improve on the state-of-the-art heuristic algorithms.

Notes

© 2011 IEEE - All rights reserved

ID: 16387189