University of Hertfordshire

By the same authors

Monk10: Burnup credit capability

Research output: Chapter in Book/Report/Conference proceedingConference contribution

  • Max Shepherd
  • Nigel Davies
  • Simon Richards
  • Paul N. Smith
  • Will Philpott
  • Chris Baker
  • Richard Hiles
  • Dave Hanlon
View graph of relations
Original languageEnglish
Title of host publicationICNC 2015 - International Conference on Nuclear Criticality Safety
PublisherAmerican Nuclear Society
Pages1144-1153
Number of pages10
ISBN (Electronic)9780894487231
Publication statusPublished - 1 Jan 2015
Externally publishedYes
Event2015 International Conference on Nuclear Criticality Safety, ICNC 2015 - Charlotte, United States
Duration: 13 Sep 201517 Sep 2015

Conference

Conference2015 International Conference on Nuclear Criticality Safety, ICNC 2015
CountryUnited States
CityCharlotte
Period13/09/1517/09/15

Abstract

MONK® is a Monte Carlo code for nuclear criticality and reactor physics analyses. It has a proven track record of application to the whole of the nuclear fuel cycle and is well established in the UK criticality community. Furthermore it is increasingly being used for reactor physics analysis (as described at ICNC 2011), which makes it an ideal tool for burn-up credit (BUC) calculations. Throughout the paper, example calculations based on a PWR are presented to illustrate the capabilities of the MONK10 code. In order to account for the spatial dependence of material burn-up it has in the past been necessary to design models with multiple regions and materials specifically to allow material burn-up to vary spatially. This is very labour intensive and difficult to change at a later stage. A new code version, MONK10, was released last year which includes the facility to allow a burn-up (BU) mesh to be superimposed on an existing model in order to account for the spatial dependence of the burn-up. This facility is used to consider the effect of radial position of a fuel element in a PWR core on BUC. Additionally, a thermal hydraulics (TH) mesh can be used to specify region dependent temperature. This, coupled with the fact that MONK10 also incorporates an on-the-fly Doppler broadening methodology facilitates the modelling of spatially dependent temperatures for the different components. A TH mesh is used to superimpose a temperature profile on a PWR based model and the effect of this on BUC is considered. The burn-up modelling in MONK has been benchmarked against the ANSWERS WIMS deterministic reactor physics code. Once the burn-up calculation has been completed and the depleted fuel compositions determined the spent fuel compositions can be transferred into a model of a storage facility or transport flask in order to perform burn-up credit analysis. The initial model is usually described as the donor model and the latter model as the receiver model. This transfer is carried out using the COWL option which allows the specification of a material in the receiver model based on the material's composition in a given BU mesh cell from the donor model. This allows compositions and densities to be transferred and also allows user specified adjustments to be made. For example, this could include omitting the fission products in order to estimate their contribution to burn-up credit and provide an actinide-only analysis. The effect of excluding appropriate nuclides is presented. An example of how the ANSWERS SPRUCE code can be used to quantify uncertainty in a BUC calculation is also presented.

ID: 17066964