University of Hertfordshire

From the same journal

By the same authors

Documents

View graph of relations
Original languageEnglish
Number of pages12
Pages (from-to)12735-12746
JournalAtmospheric Chemistry and Physics
Journal publication date4 Sep 2018
Volume18
Issue17
DOIs
Publication statusPublished - 4 Sep 2018

Abstract

Knowledge of the particle lidar ratio (Sγ) and the particle linear depolarisation ratio (δγ) for different aerosol types allows for aerosol typing and aerosol-Type separation in lidar measurements. Reference values generally originate from dedicated lidar observations but might also be obtained from the inversion of AErosol RObotic NETwork (AERONET) sun/sky radiometer measurements. This study investigates the consistency of spectral Sγ and δγ provided in the recently released AERONET version 3 inversion product for observations of undiluted mineral dust in the vicinity of the following major deserts: Gobi, Sahara, Arabian, Great Basin, and Great Victoria. Pure dust conditions are identified by an Angström exponent < 0:4 and a fine-mode fraction < 0:1. The values of spectral Sγ are found to vary for the different source regions but generally show an increase with decreasing wavelength. The feature correlates to AERONET, retrieving an increase in the imaginary part of the refractive index with decreasing wavelength. The smallest values of Sγ D 35- 45 sr are found for mineral dust from the Great Basin desert, while the highest values of 50-70 sr have been inferred from AERONET observations of Saharan dust. Values of Sγ at 675, 870, and 1020 nm seem to be in reasonable agreement with available lidar observations, while those at 440 nm are up to 10 sr higher than the lidar reference. The spectrum of δγ shows a maximum of 0.26-0.31 at 1020 nm and decreasing values as wavelength decreases. AERONET-derived δγ values at 870 and 1020 nm are in line with the lidar reference, while values of 0.19-0.24 at 440 nm are smaller than the independent lidar observations by a difference of 0.03 to 0.08. This general behaviour is consistent with earlier studies based on AERONET version 2 products.

ID: 15270292