University of Hertfordshire

From the same journal

From the same journal

By the same authors

Synthetic 26Al emission from galactic-scale superbubble simulations

Research output: Contribution to journalArticle

Documents

  • 1909.10978

    Accepted author manuscript, 2 MB, PDF document

View graph of relations
Original languageEnglish
JournalMonthly Notices of the Royal Astronomical Society
Journal publication dateDec 2019
Early online date3 Oct 2019
Publication statusE-pub ahead of print - 3 Oct 2019

Abstract

Emission from the radioactive trace element 26Al has been observed throughout the Milky Way with the COMPTEL and INTEGRAL satellites. In particular the Doppler shifts measured with INTEGRAL connect 26Al with superbubbles, which may guide 26Al flows off spiral arms in the direction of Galactic rotation. In order to test this paradigm, we have performed galaxy-scale simulations of superbubbles with 26Al injection in a Milky Way-type galaxy. We produce all-sky synthetic $\gamma-$ray emission maps of the simulated galaxies. We find that the 1809keV emission from the radioactive decay of 26Al is highly variable with time and the observer's position. This allows us to estimate an additional systematic variability of 0.2dex for a star formation rate derived from 26Al for different times and measurement locations in Milky Way-type galaxies. High-latitude morphological features indicate nearby emission with correspondingly high integrated gamma-ray intensities. We demonstrate that the 26Al scale height from our simulated galaxies depends on the assumed halo gas density. We present the first synthetic 1809keV longitude-velocity diagrams from 3D hydrodynamic simulations. The line-of-sight velocities for 26Al can be significantly different from the line-of-sight velocities associated with the cold gas. Over time, 26Al velocities consistent with the INTEGRAL observations, within uncertainties, appear at any given longitude, broadly supporting previous suggestions that 26Al injected into expanding superbubbles by massive stars may be responsible for the high velocities found in the INTEGRAL observations. We discuss the effect of systematically varying the location of the superbubbles relative to the spiral arms.

Notes

© 2019 The Author(s).

ID: 17433445