University of Hertfordshire


View graph of relations
Original languageEnglish
Number of pages9
Pages (from-to)428-436
JournalInternational Journal of Cancer
Journal publication date1 Aug 2017
Early online date16 Mar 2017
Publication statusPublished - 1 Aug 2017


There is an urgent need to develop new combination therapies beyond existing surgery, radio- and chemo-therapy, perhaps initially combining chemotherapy with the targeting specificities of immunotherapy. For this, strategies to limit inflammation and immunosuppression and evasion in the tumour microenvironment are also needed. To devise effective new immunotherapies we must first understand tumour immunology, including the roles of T cells, macrophages, myeloid suppressor cells and of exosomes and microvesicles (EMVs) in promoting angiogenesis, tumour growth, drug resistance and metastasis. One promising cancer immunotherapy discussed uses cationic liposomes carrying tumour RNA (RNA-lipoplexes) to provoke a strong anti-viral-like (cytotoxic CD8+ ) anti-tumour immune response. Mesenchymal stem cell-derived EMVs, with their capacity to migrate towards inflammatory areas including solid tumours, have also been used. As tumour EMVs clearly exacerbate the tumour microenvironment, another therapy option could involve EMV removal. Affinity-based methods to deplete EMVs, including an immunodepletion, antibody-based affinity substrate, are therefore considered. Finally EMV and exosome-mimetic nanovesicles (NVs) delivery of siRNA or chemotherapeutic drugs that target tumours using peptide ligands for cognate receptors on the tumour cells are discussed. We also touch upon the reversal of drug efflux in EMVs from cancer cells which can sensitize cells to chemotherapy. The use of immunotherapy in combination with the advent of EMVs provides potent therapies to various cancers.


This document is the Accepted Manuscript version of the following article: Colin Moore, Uchini Kosgodage, Sigrun Lange, and Jameel M. Inal, ‘The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy’, International Journal of Cancer, Vol. 141 (3): 428-436, August 2017. DOI: © 2017 UICC. This manuscript version may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

ID: 13067910