University of Hertfordshire

From the same journal

From the same journal

By the same authors

Documents

  • 1912.06149v1

    Accepted author manuscript, 11.6 MB, PDF document

View graph of relations
Original languageEnglish
JournalMonthly Notices of the Royal Astronomical Society
Publication statusAccepted/In press - 12 Dec 2019

Abstract

Accurate methods for reverberation mapping using photometry are highly sought after since they are inherently less resource intensive than spectroscopic techniques. However, the effectiveness of photometric reverberation mapping for estimating black hole masses is sparsely investigated at redshifts higher than $z\approx0.04$. Furthermore, photometric methods frequently assume a Damped Random Walk (DRW) model, which may not be universally applicable. We perform photometric reverberation mapping using the Javelin photometric DRW model for the QSO SDSSJ144645.44+625304.0 at z=0.351 and estimate the H$\beta$ lag of $65^{+6}_{-1}$ days and black-hole mass of $10^{8.22^{+0.13}_{-0.15}}M_{\odot}$. An analysis of the reliability of photometric reverberation mapping, conducted using many thousands of simulated CARMA process light-curves, shows that we can recover the input lag to within 6 per cent on average given our target's observed signal-to-noise of > 20 and an average cadence of 14 days (even when DRW is not applicable). Furthermore, we use our suite of simulated light curves to deconvolve aliases and artefacts from our QSO's posterior probability distribution, increasing the signal-to-noise on the lag by a factor of $\sim2.2$. We exceed the signal-to-noise of the Sloan Digital Sky Survey Reverberation Mapping Project (SDSS-RM) campaign with a quarter of the observing time per object, resulting in a $\sim200$ per cent increase in SNR efficiency over SDSS-RM.

Notes

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

ID: 18193252