Privacy Protection Performance of De-identified Face Images with and without Background

Zongji Sun, Li Meng* and Aladdin Ariyaeenia
School of Engineering and Technology
University of Hertfordshire
Hatfield, AL10 9AB, UK
Email: {z.sun3, L.1.MENG*, a.m.ariyaeenia}@herts.ac.uk

Abstract—This paper presents an approach to blending a de-identified face region with its original background, for the purpose of completing the process of face de-identification. The re-identification risk of the de-identified FERET face images has been evaluated for the k-Diff-furthest face de-identification method, using several face recognition benchmark methods including PCA, LBP, HOG and LPQ. The experimental results show that the k-Diff-furthest face de-identification delivers high privacy protection within the face region while blending the de-identified face region with its original background may significantly increases the re-identification risk, indicating that de-identification must also be applied to image areas beyond the face region.

Keywords—face de-identification; privacy protection; face re-identification; seamless cloning

I. INTRODUCTION

With the advance of sensor technology and the reduced cost of data storage, a huge amount of personal data are being collected at an increasing pace due to their economic and social values. Face biometric, one of the easiest biometrics to collect, is widely used in various application scenarios. Its popularity has boosted due to the recent breakthrough in pattern recognition using deep learning. The latest benchmark results on the LFW (Labelled Faces in the Wild) dataset showed that with a massive training set the performance of face recognition based on a deep convolutional neural network (CNN) successfully achieved a pair-wise verification accuracy of 99.77% [1]. Zhang et al. [2] showed that the person recognition rate could achieve 83.05% on a photo album, where only half of the images in the album contain a frontal face.

However, such data often contain sensitive personal information, which has inevitably raised privacy concerns and been exploited in privacy attacks. The 1995 Data Protection Directive of the European Union (Directive 95/46/EC) [3] demands the deployment of appropriate technical and organizational measures to protect private information in the course of transferring or processing such data. This legal requirement along with ethical responsibilities has attracted intensive research effort in the field of de-identification [4], [5]. The goal of de-identification is twofold: privacy protection as well as data utility preservation. In such way, a de-identified dataset can be used as a replacement of its original dataset to facilitate further data analysis.

II. SUBJECT REVIEW

A. Face Modelling

Active Appearance Model (AAM) is a statistical approach to object modelling. In AAMs, each face image region is represented as a combination of a face shape model and a face texture model. The face shape is defined by the locations of a set of pre-defined facial landmarks and the shapeless texture is generated by warping the original face onto a common shape. An AAM is established through training, where Principal
Component Analysis (PCA) is applied to both the shapes and the textures of the faces in the training set for the purpose of dimensionality reduction. As a result, only the first m texture PCA eigenvectors \(\{s_1, ..., s_m\} \) and the first m texture PCA eigenvectors \(\{A_1, ..., A_m\} \) are used by the trained AAM to represent a given face image. For a given face image, the trained AAM generates its shape as \(s = s_0 + \sum_{i=1}^{m} p_i A_i \), and its texture as \(A = A_0 + \sum_{i=1}^{m} \lambda_i A_i \), where \(s_0 \) and \(A_0 \) are respectively the average shape and texture over the training set, shape parameters \(p \in \mathbb{R}^m \) and texture parameters \(\lambda \in \mathbb{R}^m \). Typically, when shape and texture parameters are combined together, a scaling factors is applied to one of the two parameter sets, e.g. in the format of \(\{W_1p_1, ..., W_mp_m, \lambda_1, ..., \lambda_m\} \), to make sure they share a common range. AAMs have been used in face de-identification to not only extra shape and texture features from given face images but also to synthesise new face images. Some face features are not identity related and but will affect the visual quality of the de-identified images in forms of ghost artefacts (e.g. glasses, beard and moustache) or unnatural skin tone (e.g. illumination condition). To make sure good visual quality of the de-identified face images, some non-identity related factors are removed in this work by excluding face images with such non-identity features from the AAM training set. More details of this is given in Section III with example result images.

B. The k-Diff-furthest Face De-identification Method

The k-Same methods (k-Same-Pixel, k-Same-M, k-Same-furthest, etc.) all performs face de-identification by applying microaggregation to the original face images, where the set of original faces are divided into clusters of k and, for each cluster formed, all the original faces in the cluster are de-identified with the average of that cluster. As each de-identified face image appears in the de-identified image set k times and it can be matched, at best, with one of its k original faces, all k-Same method can guarantee a re-identification risk lower than \(1/k \) for their de-identified faces.

To further reduce the re-identification risk, the k-Same-furthest method was proposed. It minimises the association between subjects and their face data by introducing data swapping after microaggregation. In each iteration of de-identification, k-Same-furthest forms two clusters, each of size k, among the remaining original faces and ensures the distance of the two formed clusters is maximised. Unlike k-Same-Pixel and k-Same-M, the k-Same-furthest method de-identifies the faces in one cluster using the average of the other cluster rather than its own. A similar clustering approach has been adopted in the MDAV-generic to form clusters of size k [8]. As stated in [8], optimal clustering is NP-hard. The clustering approach of [8] as well as the k-Same-furthest method is near-optimal. The main differences between the k-Same-furthest and the MDAV-generic method are: 1) MDAV-generic always uses the average of the remaining data to form the next pair of clusters while k-Same-furthest forms the next cluster pair based on a randomly selected face. As a result, any two runs of the k-Same-furthest method could hardly produce identical results. 2) Overlapping between each pair of clusters is prevented in k-Same-furthest to minimise re-identification risk (mathematical proof of this has been given in [7]). And 3) k-Same-furthest applies data swapping between each pair of clusters while MDAV-generic as a microaggregation method, it does not adopt data swapping.

In a set of k-Same de-identified face images, there are at least k subjects sharing the same de-identified face, making it impossible to distinguish let alone track individuals. In information theory, entropy of a data set is defined as the negative of the logarithm of its probability distribution. Repetition of data in k-Same face de-identification inevitably leads to entropy loss or information loss. Let \(F_{\text{orig}} = \{\Gamma_1, ..., \Gamma_M\} \) be a set of M face images and be person-specific (i.e. one image per person). Let \(F_{\text{deid}} \) denote the de-identified version of \(F_{\text{orig}} \). The entropy of \(F_{\text{orig}} \) and \(F_{\text{deid}} \) is given in (1) and (2), respectively.

\[
H(F_{\text{orig}}) = -\sum_{i=1}^{M} P(\Gamma_i) \log_2 P(\Gamma_i) = -\log_2 \frac{1}{M} \quad (1)
\]

\[
H(F_{\text{deid}}) = -\sum_{i=1}^{M} P(\Gamma_{di}) \log_2 P(\Gamma_{di}) \leq -\log_2 \frac{k}{M} = -\log_2 \frac{1}{M} - \log_2 k = H(F_{\text{orig}}) - \log_2 k \quad (2)
\]

It is easy to see that \(H(F_{\text{orig}}) > H(F_{\text{deid}}) \) as \(k > 1 \), meaning that information has been lost through the microaggregation process in k-Same face de-identification. This information loss is due to a decrease in data diversity but it is the mechanism adopted in all k-Same face de-identification methods for achieving a guaranteed re-identification risk lower than \(1/k \).

To prevent information loss, we have maintained data diversity in the de-identified face set and proposed the k-Diff-furthest face de-identification method [7]. Like the k-Same-furthest method, k-Diff-furthest forms two non-overlapping clusters in each iteration. However, it swaps the cluster centres without aggregating the faces in each cluster. There are two contributions of k-Diff-furthest. Firstly, the entropy of the de-identified dataset is the same as that of the original dataset, which means each subject gets a unique de-identified face. The privacy protection performance of the proposed k-Diff-furthest method is evaluated in Section IV where the re-identification risk of the k-Diff-furthest de-identified faces is always near-zero.

C. Re-identification Risk of the De-identified Faces

Three types of re-identification attack can be used to test the protection performance of the de-identification results [4]. The first type of attack is termed naïve recognition, in which the original face images are used as the gallery and de-identified face images as the probes. The second type of attack is termed reverse recognition, in which the de-identified face images are used as the gallery and the original face images as the probes. The third type of attack is termed parrot recognition. The word ‘parrot’ means that the de-identification technique is duplicated by the attacker and the set of de-identified face images generated by the attacker is used as probes to match with the published version of the de-identified face image set. As mentioned in Section II.B, in each iteration of k-Same/Diff-furthest face de-identification two clusters are formed based on a randomly selected face. This means it is highly unlikely to repeat the same random selections and produce the same set of de-identified faces. In other words, parrot recognition does not work on either k-Same-furthest or k-Diff-furthest method.
In our work, AAM is used as the face descriptor. The proposed face de-identification methods form clusters based on Euclidean distance in the AAM feature space. Experimental results from our previous work [6], [9] showed that the re-identification risk is near zero if the attacker uses AAM face representation and matches faces based on Euclidean distance as well. To fully evaluate the privacy protection performance of our proposed methods, further evaluation experiments have been conducted which used various face representation models and distance measures, including Eigenface (PCA) [10], Local Binary Patterns (LBPs) [11], Histogram of Oriented Gradient (HOG) [12] and Local Phase Quantization (LPQ) features [13]. TABLE I summarises the key parameters of these face recognition benchmark methods. In addition, k-Nearest Neighbours method has been used to find the top match; and the dimension of both HOG features and LPQ features were reduced to 500 by applying PCA.

III. BLENDOING THE DE-IDENTIFIED FACE WITH ITS ORIGINAL IMAGE BACKGROUND

So far, all the published face de-identification methods focus on the isolated face region in the original images. The result images presented in the publications are composed of a de-identified face region and a blank background. The second column of Fig. 1 show the examples. As shown in the examples, the face region exclude hair, the ears, the forehead, the neck, the rest of the human body and the shooting environment. However, real life applications always prefer a face with a background. As stated, the background here means the rest of the human body and the shooting environment that are presented in the original image. In the case of face de-identification, this leads to the demand of blending the de-identified face region back onto its original image background.

One of the main challenges in this task is given by the noticeable differences between the original and the de-identified faces in terms of skin tone, illumination, direction of lighting, etc. Previous research in the field of face swapping and image editing has investigated similar problems and has provided several useful solutions to this challenge. The study on face swapping in [14] used one recoloring method followed by one relighting method to adjust the skin tone. Impett et al. [15] used histogram matching in the RGB space to allow real-time operation. As real-time operation is not a priority for our work at this stage, the more powerful but more time-consuming method of Poisson seamless cloning [16] has been used to achieve a better visual quality of the blended images.

As shown in Fig. 1, the face de-identification process changes not only the texture of a face but also the shape of the face. As a result, the shape of the new face might not fit within the original image background or the new shape may be too small to cover the area of the original face completely. This means a simple replacement would not generate satisfying results. One approach to this challenge could be warping the new face texture to the original face shape, where the shape of the original face would be recovered in the de-identified image and hence the face would fit perfectly with the original image background. However, the shape of a face contains rich personal identifiable information [17]. Bringing back the original face shape would significantly degrade the privacy protection performance of a face de-identification system. Therefore, the new shape of the de-identified face must be maintained after being blended with the original background.

To maintain the new shape of the de-identified face region, a different approach has been taken in this work, where the background of the original face image is deformed to make just enough room to fit the new shape of the face region. The deformation of the background is achieved using Moving Least Squares [18] by solving the best affine transformation \(t_s(x) \) that minimizes \(\sum_i w_i | t_s(p_i) - q_i |^2 \) where \(\{p_i\} \) is a set of original points and \(\{q_i\} \) is the target deformed positions of \(\{p_i\} \). In our work, \(\{p_i\} \) and \(\{q_i\} \) each are the set of facial contour landmarks as defined in [19]; \(\{p_i\} \) are the contour landmarks of the original face in the original image, \(\{q_i\} \) are the aligned landmark positions of the de-identified face region. In this work, the de-identified face region is aligned to the original face region using inner corners of the eyes and tip of the nose.

The employment of background deformation has two contributions to a face de-identification system. The first contribution is a better visual quality of the de-identified face image. Fig. 1 shows the blending results of two de-identified faces without and with background deformation. As shown in the second image of Fig. 1 (c), unexpected white spots has appeared on the sides of the face as this de-identified face is wider than its original face. In Poisson blending, the new colours (or the new skin tone) of the de-identified face is calculated pixel by pixel based on the colours of the neighbourhood pixels in the destination image (i.e. the original face image in our case). When the de-identified face region is more narrow than its original face region (as in the first row of Fig. 1), for the pixels on either side of the de-identified face, their neighbourhood pixels from the destination (original) image are pixels within the original face region carrying the original skin tone. Therefore, after Poisson blending, the side of the de-identified face would be colour-matched to the skin tone of the original face and hence the rest of the body (e.g. the ears, the forehead and the neck). The same applies to the inner pixels of the de-identified face (e.g. the redness on the cheeks). In contrast, when a de-identified face is wider than its original face (as in the second row of Fig. 1), for the pixels on either side of the de-identified face, their neighbourhood pixels from the destination (original) image are pixels outside the original face region carrying colours from the original background. As the original face has a white background, without background deformation white spots has appeared on both sides of the de-identified face after Poisson blending (as shown in the second image of Fig. 1 (c)).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Parameter values</th>
<th>Distance measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td></td>
<td>Euclidean distance</td>
</tr>
<tr>
<td>LBP</td>
<td>(\text{radius} = 1, \text{neighbours} = 8)</td>
<td>Chi-squared distance</td>
</tr>
<tr>
<td>HOG</td>
<td>(\text{cell} = 10 \times 10, \text{orientations} = 16)</td>
<td>Cosine distance</td>
</tr>
<tr>
<td>LPQ</td>
<td>(\text{cell} = 10 \times 10)</td>
<td>Cosine distance</td>
</tr>
</tbody>
</table>

TABLE I. **KEY PARAMETERS OF THE FACE RECOGNITION METHODS USED IN THE EVALUATION EXPERIMENTS**
The face region
ear zero re
wever, the level of
approximate
ation attacks against
most significant texture feature is always set to its mean value
condition of the images. To calibrate the lighting condition, the
deglasses frame, beard or moustache would appear on the resulting
such features
them are without glasses, bea
images of frontal faces taken from the FERET dataset and all of
generated with the same AAM, which was trained on a subset of
B.
similarity and hence a challenge to our
taken
identified 'fb' (the last row) images for five subjects from the
identified version of the 'fb' faces.
All the 'fa' faces were used as the gallery in the re
chosen from the available images of 994 subjects to ensure that
subjects has been used in the experiments. This subset was
A.
IV. EVALUATION OF RE-IDENTIFICATION RISK
This section evaluates the re-identification risk of the de
identified face images generated by the k-Diff-furthest method.
A. Dataset
A subset of the FERET face dataset [20] containing 963
subjects has been used in the experiments. This subset was
chosen from the available images of 994 subjects to ensure that
each subject has two colour frontal face images (‘fa’ and ‘fb’).
All the ‘fa’ faces were used as the gallery in the re-identification
tests to match against either the original version or the de
identified version of the ‘fb’ faces. Fig. 5 shows the original ‘fa’
(the first row), the original ‘fb’ (the second row) and the de
identified ‘fb’ (the last row) images for five subjects from the
chosen FERET subset. As each pair of ‘fa’ and ‘fb’ images were
taken at the same shooting session, they present a high degree of
similarity and hence a challenge to our k-Diff-furthest face de
identification method.
B. Training of the AAM Face Representation Model
In this study, all the k-Diff-furthest de-identified faces were
generated with the same AAM, which was trained on a subset of
the FERET dataset. The AAM training set contains 1952 colour
images of frontal faces taken from the FERET dataset and all of
them are without glasses, beard or moustache. The exclusion of
such features has enabled the automatic removal of such non
identity related features through AAM representation, as shown
by the examples in Fig. 2. As a result, no faded (or averaged out)
glasses frame, beard or moustache would appear on the resulting
de-identified face images to degrade the visual quality of the
image. In addition, it was observed that the most significant
texture feature in our trained AAM describes merely the lighting
condition of the images. To calibrate the lighting condition, the
most significant texture feature is always set to its mean value
(over the training set) for all the images represented in our face
model.
C. Re-identification Tests
Before calculating face features with its face representation
model, all face recognition systems isolate the face region from
the background through cropping. Some systems crop the face
region with a rectangular box while some systems define the
face region with some facial landmarks (e.g. those on the
eyebrows and the jawline as in our k-Diff-furthest method). In
our re-identification tests, the face images were first aligned to
the mean shape of the training set (approximately 200 × 200
pixels) and then cropped by a rectangular box co-centred with
the mean shape. The size of the cropping box is either 200 × 200
or 300 × 300 pixels. The cropped images can be with or without
a background. Fig. 3 shows the face images used in these re
identification tests for an example subject.
TABLE III presents the re-identification risk of the k-Diff
furthest method measured in naive recognition attacks against
four face recognition methods. All the recognition rates in TABLE III are averages over 10 runs and are presented in the
format of accuracy ± standard deviation. TABLE III (a) shows
that without merging with the original background the de
identified face regions generated by our k-diff-furthest method
always present a near zero re-identification risk for all the
benchmark face recognition methods tested.
TABLE III (b) shows the re-identification risk increases
when the de-identified face region is blended with its original
background. This is mainly due to the fact that the Passion
blending process has brought the skin-tone and illumination of
the original face image back to the de-identified face image.
Furthermore, the more the original background in a cropped face
image, the higher the re-identification risk will be. The results
are under 7% and still acceptable when the face images were
cropped with a 200 × 200 square. However, the level of re
identification risk became unacceptably high when the face
images were cropped with a 300 × 300 square, indicating that
background areas around the face region may also contain
personal identifiable information and de-identification must also
be applied to these image areas to achieve complete privacy
protection. Further experiments have been conducted to evaluate
the re-identification risk presented by the background area alone.
Results of these experiments are presented and discussed in the
next sub-section.
TABLE IV shows the results of reverse recognition attacks, which are similar to those of naïve recognition attacks. All the de-identified face images yield a near zero re-identification risk when the background is excluded from the image but a much higher risk when the background is included.

D. Background Attack to Face De-identification System

As shown by TABLE III and TABLE IV the background area of an original face image presents personal identifiable information and can increase the re-identification risk when being blended with the de-identified face region. Here the background area may contain not only the background environment of the original image but also the hairstyle, the ear, the neck and the dressing style presented in the original image.

This experiment aimed to investigate the possibility of using merely the background area of the original face image to attack the face de-identification system. Fig. 4 shows some example images used in this experiment. Background attack is a generic attack to any face de-identification method that modifies the face region only. The idea and implementation of this attack is basic. All the face images were applied with an inverse crop based on their facial landmarks, so that only the image area outside the face region was kept. Inverse crop has been used in face recognition to compare the recognition performance between human and computer [21], [22]. After inverse crop, the images were cropped into the size of 300 x 300 for face recognition. The experimental results are shown in TABLE II Comparing with the results shown in TABLE III, it is clear that the background area of the original image was the main contributor to the increase in the re-identification risk.

![Fig. 4. Examples of inverse crop face images used in background attack experiment](image)

TABLE II. RE-IDENTIFICATION RISK (%) OF INVERSE CROPPED FACE IMAGES

<table>
<thead>
<tr>
<th>Method</th>
<th>300 x 300 inverse crop</th>
<th>De-id</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original</td>
<td>De-id</td>
</tr>
<tr>
<td>PCA</td>
<td>56.39</td>
<td>31.82 ± 0.89</td>
</tr>
<tr>
<td>LBP</td>
<td>78.19</td>
<td>55.62 ± 0.68</td>
</tr>
<tr>
<td>HOG</td>
<td>53.27</td>
<td>27.07 ± 1.09</td>
</tr>
<tr>
<td>LPQ</td>
<td>60.44</td>
<td>32.88 ± 1.06</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS

The experimental results show that the k-Diff-furthest face de-identification method provides high privacy protection within the face region. However, blending the de-identified face to its original background increases the re-identification risk. Although a face recognition software focuses on the cropped face region, but information contained in the background area around the face region (e.g. hair colour, hairstyle, and dressing style) can also be used to identify a person. Our experiment of a background attack confirmed that face region is sufficient but not necessary for identifying a person. To protect privacy of the individuals captured in an image/video, de-identification must be applied to not only the face region but also all the image regions that contain personal identifiable information.

REFERENCES

TABLE III. NAIVE RECOGNITION RATES (%) OF ORIGINAL ‘FB’ FACES AND DE-IDENTIFIED ‘FB’ FACES AGAINST ORIGINAL ‘FA’

<table>
<thead>
<tr>
<th>Method</th>
<th>Without background</th>
<th>With background</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 × 200</td>
<td>300 × 300</td>
</tr>
<tr>
<td></td>
<td>Original De-id</td>
<td>Original De-id</td>
</tr>
<tr>
<td>PCA</td>
<td>47.25 0.13 ± 0.16</td>
<td>42.37 0.07 ± 0.09</td>
</tr>
<tr>
<td>LBP</td>
<td>74.25 0.11 ± 0.10</td>
<td>63.03 0.13 ± 0.11</td>
</tr>
<tr>
<td>HOG</td>
<td>47.14 0.21 ± 0.14</td>
<td>18.38 0.17 ± 0.20</td>
</tr>
<tr>
<td>LPQ</td>
<td>53.27 0.25 ± 0.18</td>
<td>47.04 0.25 ± 0.11</td>
</tr>
</tbody>
</table>

TABLE IV. REVERSE RECOGNITION RATES (%) OF ORIGINAL ‘FB’ FACES AND DE-IDENTIFIED ‘FB’ FACES AGAINST ORIGINAL ‘FA’

<table>
<thead>
<tr>
<th>Method</th>
<th>Without background</th>
<th>With background</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 × 200</td>
<td>300 × 300</td>
</tr>
<tr>
<td></td>
<td>Original De-id</td>
<td>Original De-id</td>
</tr>
<tr>
<td>PCA</td>
<td>45.38 0.33 ± 0.19</td>
<td>41.53 0.30 ± 0.21</td>
</tr>
<tr>
<td>LBP</td>
<td>72.59 0.23 ± 0.14</td>
<td>63.14 0.21 ± 0.11</td>
</tr>
<tr>
<td>HOG</td>
<td>46.52 0.24 ± 0.16</td>
<td>17.03 0.07 ± 0.09</td>
</tr>
<tr>
<td>LPQ</td>
<td>50.88 0.23 ± 0.15</td>
<td>46.31 0.20 ± 0.14</td>
</tr>
</tbody>
</table>

Fig. 5. Examples of the FERET face images used in the re-identification tests.