TY - JOUR
T1 - 2D Transformations of Energy Signals for Energy Disaggregation
AU - Schirmer, Pascal
AU - Mporas, Iosif
N1 - © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
PY - 2022/9/22
Y1 - 2022/9/22
N2 - The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of individual electrical appliances by disaggregating the overall power consumption that has been sampled from a smart meter at a house or commercial/industrial building. Last decade’s developments in deep learning and the utilization of Convolutional Neural Networks have improved disaggregation accuracy significantly, especially when utilizing two-dimensional signal representations. However, converting time series’ to two-dimensional representations is still an open challenge, and it is not clear how it influences the performance of the energy disaggregation. Therefore, in this article, six different two-dimensional representation techniques are compared in terms of performance, runtime, influence on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show an advantage of two-dimensional imaging techniques over univariate and multivariate features. In detail, the evaluation results show that: first, the active and reactive power-based signatures double Fourier based signatures, as well as outperforming most of the other approaches for low levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise, they perform best under high noise conditions and show the smallest decrease in performance with increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no significant improvements in terms of performance could be observed.
AB - The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of individual electrical appliances by disaggregating the overall power consumption that has been sampled from a smart meter at a house or commercial/industrial building. Last decade’s developments in deep learning and the utilization of Convolutional Neural Networks have improved disaggregation accuracy significantly, especially when utilizing two-dimensional signal representations. However, converting time series’ to two-dimensional representations is still an open challenge, and it is not clear how it influences the performance of the energy disaggregation. Therefore, in this article, six different two-dimensional representation techniques are compared in terms of performance, runtime, influence on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show an advantage of two-dimensional imaging techniques over univariate and multivariate features. In detail, the evaluation results show that: first, the active and reactive power-based signatures double Fourier based signatures, as well as outperforming most of the other approaches for low levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise, they perform best under high noise conditions and show the smallest decrease in performance with increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no significant improvements in terms of performance could be observed.
U2 - 10.3390/s22197200
DO - 10.3390/s22197200
M3 - Article
SN - 1424-3210
VL - 22
JO - Sensors
JF - Sensors
IS - 19
M1 - 7200
ER -