2D Transformations of Energy Signals for Energy Disaggregation

Pascal Schirmer, Iosif Mporas

Research output: Contribution to journalArticlepeer-review

17 Downloads (Pure)

Abstract

The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of individual electrical appliances by disaggregating the overall power consumption that has been sampled from a smart meter at a house or commercial/industrial building. Last decade’s developments in deep learning and the utilization of Convolutional Neural Networks have improved disaggregation accuracy significantly, especially when utilizing two-dimensional signal representations. However, converting time series’ to two-dimensional representations is still an open challenge, and it is not clear how it influences the performance of the energy disaggregation. Therefore, in this article, six different two-dimensional representation techniques are compared in terms of performance, runtime, influence on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show an advantage of two-dimensional imaging techniques over univariate and multivariate features. In detail, the evaluation results show that: first, the active and reactive power-based signatures double Fourier based signatures, as well as outperforming most of the other approaches for low levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise, they perform best under high noise conditions and show the smallest decrease in performance with increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no significant improvements in terms of performance could be observed.
Original languageEnglish
Article number7200
Number of pages16
JournalSensors
Volume22
Issue number19
DOIs
Publication statusPublished - 22 Sept 2022

Fingerprint

Dive into the research topics of '2D Transformations of Energy Signals for Energy Disaggregation'. Together they form a unique fingerprint.

Cite this