Abstract
This paper utilizes a Pareto-based, three-dimensional (3-D) analysis to identify complete and partial shading of photovoltaic (PV) systems for a complicated urban environment, where unusual shape of PV and installation topology is studied. The Pareto optimization attempts to minimize losses in a certain area with an improved output energy and without compromising the overall efficiency of the system of which the nominal operating cell temperature (NOCT) for a glass/glass-module is considered as a significant parameter. The system is referenced to the environment based on IEC61215 via a closed-circuit and resistive load to ensure the module operates at the maximum power point. A maximum power point tracking controller is enhanced with an advanced perturb and observe algorithm to maintain the PV operating point at its maximum output under various working conditions. The most cost-effective design of the PV module is achieved via optimizing installation parameters such as tilt angle, pitch, and shading to improve the energy yield. The parameter settings and suitability of the design are also determined based on the reduced amount of CO 2 emissions. An experimental investigation has been carried out to verify the 3-D shading analysis and NOCT technique for both open-circuit and grid-connected PV modules.
Original language | English |
---|---|
Pages (from-to) | 843-852 |
Number of pages | 10 |
Journal | IEEE Transactions on Sustainable Energy |
Volume | 10 |
Issue number | 2 |
Early online date | 21 Jun 2018 |
DOIs | |
Publication status | Published - 1 Apr 2019 |