A classification of disjoint unions of two or three copies of the free monogenic semigroup

N. Abu-Ghazalh, J. D. Mitchell, Y. Péresse, N. Ruškuc

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
52 Downloads (Pure)

Abstract

We prove that, up to isomorphism and anti-isomorphism, there are only two semigroups which are the union of two copies of the free monogenic semigroup. Similarly, there are only nine semigroups which are the union of three copies of the free monogenic semigroup. We provide finite presentations for each of these semigroups.
Original languageEnglish
Pages (from-to)53-61
Number of pages9
JournalSemigroup Forum
Volume91
Issue number1
Early online date19 Dec 2014
DOIs
Publication statusPublished - 1 Aug 2015

Keywords

  • Semigroups
  • Abstract Algebra

Fingerprint

Dive into the research topics of 'A classification of disjoint unions of two or three copies of the free monogenic semigroup'. Together they form a unique fingerprint.

Cite this