Abstract
By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of an exotic theory with G/H duality structure F4(4)/Sp(3) × Sp(1).
Original language | English |
---|---|
Article number | 178 |
Journal | Journal of High Energy Physics |
Volume | 2014 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2014 |
Externally published | Yes |
Keywords
- Extended supersymmetry
- Gauge-gravity correspondence
- Supergravity models
- Supersymmetry and duality