A molecular dynamics simulation of liquid-vapour-solid system near triple-phase contact line of flow boiling in a microchannel

C.Y. Ji, Y.Y. Yan

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)
103 Downloads (Pure)

Abstract

In this paper, the liquid-vapour-solid system near triple-phase contact line in a microchannel heat sink is studied numerically. Molecular dynamics (MD) method is employed aiming to get a microscopic insight into the complex liquid-vapour-solid system. In the present model, the Lennard-Jones potential is applied to mono-atomic molecules of argon as liquid and vapour, and platinum as solid substrates, to perform a simulation of non-equilibrium molecular dynamics. The results of numerical simulation suggest that for a completely wetting system of mono-atomic fluid and substrates, there is a non-evaporating liquid film with thickness in nanometres existing on the heating solid surface. The film thickness in the triple-phase contact line under different conditions of substrate temperature is predicted. The thickness of such an ultra-thin liquid film varies only slightly with the number of argon molecules but decreases with the increase of heating substrate temperature. The potential energy in the thin liquid film decreases considerably toward the heating wall; this indicates that the interactions of solid and liquid molecules are very strong.
Original languageEnglish
Pages (from-to)195-202
Number of pages8
JournalApplied Thermal Engineering
Volume28
Issue number2-3
Early online date10 Apr 2007
DOIs
Publication statusPublished - 1 Feb 2008

Fingerprint

Dive into the research topics of 'A molecular dynamics simulation of liquid-vapour-solid system near triple-phase contact line of flow boiling in a microchannel'. Together they form a unique fingerprint.

Cite this