A numerical investigation of similar and dissimilar clad materials on H13 steel substrate in the Laser Cladding process

Nusrat Tamanna, Israt Rumana Kabir, Sumsun Naher

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Minimal dilution, controlled heat input, excellent metallurgical bonding between the clad and the substrate material made the laser cladding process more appealing compared to other conventional surface modification techniques. However, generated residual stress in the finished component encounters this process for applications. In this work, a thermo-mechanical model has been developed numerically using ANSYS’18 multi-physics platform to analyse and compare residual stresses among different cladding materials. Three different clad materials, H13 steel, Al2O3 and TiC were used on the same H13 tool steel substrate. Tensile residual stresses were observed in the clad, at interface and in substrate near the interface for all samples in X direction. It was found that Al2O3 coating on H13 steel produced lower residual stress (1220 MPa) in the clad than TiC coating on H13 steel (1359 MPa) due to lower mismatch of thermal strain. This proposed analysis offers to select the combination of clad and substrate materials having minimum residual stresses in the Laser Cladding process.

Original languageEnglish
Pages (from-to)598-606
Number of pages9
JournalAdvances in Materials and Processing Technologies
Volume5
Issue number4
DOIs
Publication statusPublished - 2 Oct 2019

Keywords

  • Laser cladding process
  • materials
  • residual stresses
  • thermal history

Fingerprint

Dive into the research topics of 'A numerical investigation of similar and dissimilar clad materials on H13 steel substrate in the Laser Cladding process'. Together they form a unique fingerprint.

Cite this