Abstract
A radiation-driven disk wind model is proposed that offers great promise of explaining the extreme mass loss signatures of massive young stellar objects (the BN-type objects and more luminous Herbig Be stars). It is argued that the dense low-velocity winds associated with young late-O/early-B stars would be the consequence of continuing optically-thick accretion onto them. The launch of outflow from a Keplerian disk allows wind speeds of ~200 km s−1 that are substantially less than the escape speed from the stellar surface. The star itself is not required to be a rapid rotator. Disk irradiation is taken into account in the hydrodynamical calculation presented, and identified as an important issue both observationally and from the dynamical point of view.
Original language | English |
---|---|
Pages (from-to) | L6-L10 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 296 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1998 |