Abstract
The identification of printed materials is a critical and challenging issue for security purposes, especially when it comes to documents such as banknotes, tickets, or rare collectable cards: eligible targets for ad hoc forgery. State-of-the-art methods require expensive and specific industrial equipment, while a low-cost, fast, and reliable solution for document identification is increasingly needed in many contexts. This paper presents a method to generate a robust fingerprint,
by the extraction of translucent patterns from paper sheets, and exploiting the peculiarities of binary pattern descriptors. A final descriptor is generated by employing a block-based solution followed by principal component analysis (PCA), to reduce the overall data to be processed. To validate the robustness of the proposed method, a novel dataset was created and recognition tests were performed under both ideal and noisy conditions.
by the extraction of translucent patterns from paper sheets, and exploiting the peculiarities of binary pattern descriptors. A final descriptor is generated by employing a block-based solution followed by principal component analysis (PCA), to reduce the overall data to be processed. To validate the robustness of the proposed method, a novel dataset was created and recognition tests were performed under both ideal and noisy conditions.
Original language | English |
---|---|
Article number | 126 |
Pages (from-to) | e126 |
Number of pages | 14 |
Journal | Journal of Imaging |
Volume | 7 |
Issue number | 8 |
DOIs | |
Publication status | Published - 29 Jul 2021 |
Keywords
- Binary pattern
- Document identification
- Texture fingerprint