Activation of TRPV4 channels (hVRL-2/mTrp12) by phorbol derivatives

H. Watanabe, J.B. Davis, D. Smart, J.C. Jerman, G.D. Smith, P. Hayes, J. Vriens, W. Cairns, U. Wissenbach, J. Prenen, G.D. Flockerzi, G. Droogmans, C.D. Benham, B. Nilius

    Research output: Contribution to journalArticlepeer-review

    461 Citations (Scopus)


    We have studied activation by phorbol derivatives of TRPV4 channels, the human VRL-2, and murine TRP12 channels, which are highly homologous to the human VR-OAC, and the human and murine OTRPC4 channel. 4α-Phorbol 12,13-didecanoate (4α-PDD) induced an increase in intracellular Ca2+ concentration, [Ca2+]i, in 1321N1 cells stably transfected with human VRL-2 (hVRL-2.1321N1) or HEK-293 cells transiently transfected with murine TRP12, but not in nontransfected or mock-transfected cells. Concomitantly with the increase in [Ca2+]i, 4α-PDD activated an outwardly rectifying cation channel with an Eisenman IV permeation sequence for monovalent cations that is Ca2+-permeable withP Ca/P Na = 5.8. Phorbol 12-myristate 13-acetate also induced an increase in [Ca2+]i but was ∼50 times less effective than 4α-PDD. EC50 for Ca2+ increase and current activation was nearly identical (pEC50 ∼ 6.7). Similar effects were observed in freshly isolated mouse aorta endothelial cells which express TRP12 endogenously. By using 4α-PDD as a tool to stimulate TRP12, we showed that activation of this channel is modulated by [Ca2+]i; an increase in [Ca2+]i inhibits the channel with an IC50 of 406 nm. Ruthenium Red at a concentration of 1 μm completely blocks inward currents at −80 mV but has a smaller effect on outward currents likely indicating a voltage dependent channel block. We concluded that the phorbol derivatives activate TRPV4 (VR-OAC, VRL-2, OTRPC4, TRP12) independently from protein kinase C, in a manner consistent with direct agonist gating of the channel.
    Original languageEnglish
    Pages (from-to)13569-13577
    JournalJournal of Biological Chemistry
    Issue number16
    Publication statusPublished - 2002


    Dive into the research topics of 'Activation of TRPV4 channels (hVRL-2/mTrp12) by phorbol derivatives'. Together they form a unique fingerprint.

    Cite this