TY - JOUR
T1 - Affine Gaudin models and hypergeometric functions on affine opers
AU - Lacroix, Sylvain
AU - Vicedo, Benoit
AU - Young, Charles A. S.
N1 - 53 pages; v2: minor edits; version to appear in Advances in Mathematics
PY - 2019/7/9
Y1 - 2019/7/9
N2 - We conjecture that quantum Gaudin models in affine types admit families of higher Hamiltonians, labelled by the (countably infinite set of) exponents, whose eigenvalues are given by functions on a space of meromorphic opers associated with the Langlands dual Lie algebra. This is in direct analogy with the situation in finite types. However, in stark contrast to finite types, we prove that in affine types such functions take the form of hypergeometric integrals, over cycles of a twisted homology defined by the levels of the modules at the marked points. That result prompts the further conjecture that the Hamiltonians themselves are naturally expressed as such integrals. We go on to describe the space of meromorphic affine opers on an arbitrary Riemann surface. We prove that it fibres over the space of meromorphic connections on the canonical line bundle Ω. Each fibre is isomorphic to the direct product of the space of sections of the square of Ω with the direct product, over the exponents j not equal to 1, of the twisted cohomology of the jth tensor power of Ω.
AB - We conjecture that quantum Gaudin models in affine types admit families of higher Hamiltonians, labelled by the (countably infinite set of) exponents, whose eigenvalues are given by functions on a space of meromorphic opers associated with the Langlands dual Lie algebra. This is in direct analogy with the situation in finite types. However, in stark contrast to finite types, we prove that in affine types such functions take the form of hypergeometric integrals, over cycles of a twisted homology defined by the levels of the modules at the marked points. That result prompts the further conjecture that the Hamiltonians themselves are naturally expressed as such integrals. We go on to describe the space of meromorphic affine opers on an arbitrary Riemann surface. We prove that it fibres over the space of meromorphic connections on the canonical line bundle Ω. Each fibre is isomorphic to the direct product of the space of sections of the square of Ω with the direct product, over the exponents j not equal to 1, of the twisted cohomology of the jth tensor power of Ω.
KW - Affine opers
KW - Bethe ansatz
KW - Gaudin model
KW - Hypergeometric integrals
UR - http://www.scopus.com/inward/record.url?scp=85065092062&partnerID=8YFLogxK
U2 - 10.1016/j.aim.2019.04.032
DO - 10.1016/j.aim.2019.04.032
M3 - Article
SN - 0001-8708
VL - 350
SP - 486
EP - 546
JO - Advances in Mathematics
JF - Advances in Mathematics
ER -