Abstract
We analyse the physical properties of a large, homogeneously selected sample of ALMA-located sub-mm galaxies (SMGs) detected in the SCUBA-2 CLS 850-$\mu$m map of the UKIDSS/UDS field. This survey, AS2UDS, identified 707 SMGs across the ~1 sq.deg. field, including ~17 per cent which are undetected in the optical/near-infrared to $K$>~25.7 mag. We interpret the UV-to-radio data using a physically motivated model, MAGPHYS and determine a median photometric redshift of z=2.61+-0.08, with a 68th percentile range of z=1.8-3.4 and just ~6 per cent at z>4. The redshift distribution is well fit by a model combining evolution of the gas fraction in halos with the growth of halo mass past a threshold of ~4x10$^{12}$M$_\odot$, thus SMGs may represent the highly efficient collapse of gas-rich massive halos. Our survey provides a sample of the most massive, dusty galaxies at z>~1, with median dust and stellar masses of $M_d$=(6.8+-0.3)x10$^{8}$M$_\odot$ (thus, gas masses of ~10$^{11}$M$_\odot$) and $M_\ast=$(1.26+-0.05)x10$^{11}$M$_\odot$. These galaxies have gas fractions of $f_{gas}=$0.41+-0.02 with depletion timescales of ~150Myr. The gas mass function evolution at high masses is consistent with constraints at lower masses from blind CO-surveys, with an increase to z~2-3 and then a decline at higher redshifts. The space density and masses of SMGs suggests that almost all galaxies with $M_\ast$>~2x10$^{11}$M$_\odot$ have passed through an SMG-like phase. We find no evolution in dust temperature at a constant far-infrared luminosity across z~1.5-4. We show that SMGs appear to behave as simple homologous systems in the far-infrared, having properties consistent with a centrally illuminated starburst. Our study provides strong support for an evolutionary link between the active, gas-rich SMG population at z>1 and the formation of massive, bulge-dominated galaxies across the history of the Universe.
Original language | English |
---|---|
Article number | staa769 |
Pages (from-to) | 3828–3860 |
Number of pages | 33 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 494 |
Issue number | 3 |
Early online date | 2 Apr 2020 |
DOIs | |
Publication status | Published - May 2020 |
Keywords
- astro-ph.GA