TY - JOUR
T1 - An Atmospheric Retrieval of the Brown Dwarf Gliese 229B
AU - Calamari, Emily
AU - Faherty, Jacqueline K.
AU - Burningham, Ben
AU - Gonzales, Eileen
AU - Bardalez-Gagliuffi, Daniella
AU - Vos, Johanna M.
AU - Gemma, Marina
AU - Whiteford, Niall
AU - Gaarn, Josefine
N1 - © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/
PY - 2022/12/1
Y1 - 2022/12/1
N2 - We present results from an atmospheric retrieval analysis of Gl 229B using the Brewster retrieval code. We find the best fit model to be cloud-free, consistent with the T dwarf retrieval work of Line et al.; Zalesky et al. and Gonzales et al. Fundamental parameters (mass, radius, log(L Bol /L Sun), log(g)) determined from our model agree within 1σ to SED-derived values, except for T eff where our retrieved T eff is approximately 100 K cooler than the evolutionary model-based SED value. We find a retrieved mass of 50−9+12 M Jup, however, we also find that the observables of Gl 229B can be explained by a cloud-free model with a prior on mass at the dynamical value, 70 M Jup . We are able to constrain abundances for H2O, CO, CH4, NH3, Na and K and find a supersolar C/O ratio as compared to its primary, Gl 229A. We report an overall subsolar metallicity due to atmospheric oxygen depletion, but find a solar [C/H], which matches that of the primary. We find that this work contributes to a growing trend in retrieval-based studies, particularly for brown dwarfs, toward supersolar C/O ratios and discuss the implications of this result on formation mechanisms and internal physical processes, as well as model biases.
AB - We present results from an atmospheric retrieval analysis of Gl 229B using the Brewster retrieval code. We find the best fit model to be cloud-free, consistent with the T dwarf retrieval work of Line et al.; Zalesky et al. and Gonzales et al. Fundamental parameters (mass, radius, log(L Bol /L Sun), log(g)) determined from our model agree within 1σ to SED-derived values, except for T eff where our retrieved T eff is approximately 100 K cooler than the evolutionary model-based SED value. We find a retrieved mass of 50−9+12 M Jup, however, we also find that the observables of Gl 229B can be explained by a cloud-free model with a prior on mass at the dynamical value, 70 M Jup . We are able to constrain abundances for H2O, CO, CH4, NH3, Na and K and find a supersolar C/O ratio as compared to its primary, Gl 229A. We report an overall subsolar metallicity due to atmospheric oxygen depletion, but find a solar [C/H], which matches that of the primary. We find that this work contributes to a growing trend in retrieval-based studies, particularly for brown dwarfs, toward supersolar C/O ratios and discuss the implications of this result on formation mechanisms and internal physical processes, as well as model biases.
KW - 340
KW - Stars and Stellar Physics
U2 - 10.3847/1538-4357/ac9cc9
DO - 10.3847/1538-4357/ac9cc9
M3 - Article
SN - 0004-637X
VL - 940
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
M1 - 164
ER -