An experimental study on thermophysical properties of nano‑TiO2‑enhanced phase change materials for cold climate applications

Lucrezia Ravasio, Muhammad Hayat, Rajinish Kaur Calay, Raymond Riise, Yong Kang CHEN

Research output: Contribution to journalArticlepeer-review


In high-energy-demand regions, such as the Arctic, the building sector is focused on reducing the carbon footprint and mitigating environmental impact. To achieve this, phase change materials (PCMs) are being investigated for thermal energy storage due to their high latent heat of fusion. However, their limited applications arise from poor thermal conductivity. In addressing this issue, the research delves into the preparation and characterization of nano-PCMs. These materials, synthesized in a laboratory setting, exhibit enhanced thermal performance compared to pure PCMs, attributed to the incorporation
of nanoparticles in the material composition. Therefore, in the study, three paraffins with different melting temperatures (10, 15 and 18 °C) are modified by incorporating titanium oxide at various concentrations (0.05, 0.1, 0.2 and 0.5 mass%). Thermal conductivity and latent heat capacity measurements were undertaken using a thermal conductivity measuring apparatus and
differential scanning calorimetry, respectively. The aim was to evaluate the enhanced performance of the modified PCMs in comparison with pure PCMs and to assess their suitability for cold climate regions. Results showed that nanoparticle incorporation increased thermal conductivity by up to 37%, albeit with a slight reduction in latent heat capacity of up to 12%. Among the samples, RT18 exhibited the most significant improvement in thermal conductivity, while RT10 experienced a minor decrease in enthalpy values. Ultimately, RT10 was identified as the optimal PCM option for cold climates, as its phase change temperature range aligns with the outdoor temperatures in the Arctic.
Original languageEnglish
Number of pages12
JournalJournal of Thermal Analysis and Calorimetry
Publication statusPublished - 30 Jan 2024


  • · Nanoparticles
  • Energy
  • Sustainability
  • Building


Dive into the research topics of 'An experimental study on thermophysical properties of nano‑TiO2‑enhanced phase change materials for cold climate applications'. Together they form a unique fingerprint.

Cite this