TY - JOUR
T1 - Anti-inflammatory effect of dual nociceptin and opioid receptor agonist, BU08070, in experimental colitis in mice
AU - Zielińska, Marta
AU - Haddou, Tanila Ben
AU - Cami-Kobeci, Gerta
AU - Sałaga, Maciej
AU - Jarmuz, Agata
AU - Padysz, Milena
AU - Kordek, Radzisław
AU - Spetea, Mariana
AU - Husbands, Stephen M.
AU - Fichna, Jakub
N1 - © 2015 Elsevier B.V. All rights reserved.
PY - 2015/10/15
Y1 - 2015/10/15
N2 - Endogenous opioid and nociceptin systems are widely distributed in the gastrointestinal tract where they seem to play a crucial role in maintaining the intestinal homeostasis. The aim of our study was to assess whether activation of nociceptin (NOP) and μ-opioid (MOP) receptors by a mixed NOP/MOP receptor agonist, BU08070, induces anti-inflammatory response in experimental colitis. The anti-inflammatory effect of BU08070 (1 mg/kg i.p.) was characterized in the mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, based on the assessment of the macroscopic and microscopic total damage scores and determination of myeloperoxidase (MPO) activity and TNF-α level in the colon. The effect of BU08070 on cell viability and NF-κB was characterized in THP-1 Blue cell line. The antinociceptive activity of BU08070 was examined in mustard oil-induced mouse model of abdominal pain. A potent anti-inflammatory effect of BU08070 (1 mg/kg i.p.) was observed as indicated by decrease in macroscopic damage score (1.88±0.39 vs. 5.19±0.43 units in TNBS alone treated mice), MPO activity (2.29±0.37 vs. 9.64±2.55 units) and TNF-α level in the colon (35.85±2.45 vs. 49.79±3.81 pg/ml). The anti-inflammatory effect of BU08070 was reversed by selective NOP and MOP receptor antagonists. BU08070 produced concentration-dependent inhibition of TNF-α and LPS-induced NF-κB activation. BU08070 exerted antinociceptive action in mice with experimental colitis. In conclusion, BU08070 significantly reduced the severity of colitis in TNBS-treated mice compared with controls. These results suggest that BU08070 is a potential therapeutic agent for inflammatory bowel diseases therapy.
AB - Endogenous opioid and nociceptin systems are widely distributed in the gastrointestinal tract where they seem to play a crucial role in maintaining the intestinal homeostasis. The aim of our study was to assess whether activation of nociceptin (NOP) and μ-opioid (MOP) receptors by a mixed NOP/MOP receptor agonist, BU08070, induces anti-inflammatory response in experimental colitis. The anti-inflammatory effect of BU08070 (1 mg/kg i.p.) was characterized in the mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, based on the assessment of the macroscopic and microscopic total damage scores and determination of myeloperoxidase (MPO) activity and TNF-α level in the colon. The effect of BU08070 on cell viability and NF-κB was characterized in THP-1 Blue cell line. The antinociceptive activity of BU08070 was examined in mustard oil-induced mouse model of abdominal pain. A potent anti-inflammatory effect of BU08070 (1 mg/kg i.p.) was observed as indicated by decrease in macroscopic damage score (1.88±0.39 vs. 5.19±0.43 units in TNBS alone treated mice), MPO activity (2.29±0.37 vs. 9.64±2.55 units) and TNF-α level in the colon (35.85±2.45 vs. 49.79±3.81 pg/ml). The anti-inflammatory effect of BU08070 was reversed by selective NOP and MOP receptor antagonists. BU08070 produced concentration-dependent inhibition of TNF-α and LPS-induced NF-κB activation. BU08070 exerted antinociceptive action in mice with experimental colitis. In conclusion, BU08070 significantly reduced the severity of colitis in TNBS-treated mice compared with controls. These results suggest that BU08070 is a potential therapeutic agent for inflammatory bowel diseases therapy.
KW - Crohn's disease
KW - Inflammatory bowel diseases
KW - Mixed opioid agonists
KW - Visceral pain
UR - http://www.scopus.com/inward/record.url?scp=84954357950&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2015.09.021
DO - 10.1016/j.ejphar.2015.09.021
M3 - Article
C2 - 26404500
AN - SCOPUS:84954357950
SN - 0014-2999
VL - 765
SP - 582
EP - 590
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
ER -