Are ancient dwarf satellites the building blocks of the Galactic halo?

Emanuele Spitoni, F. Vincenzo, Francesca Matteucci, D. Romano

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)
    23 Downloads (Pure)

    Abstract

    According to the current cosmological cold dark matter paradigm, the Galactic halo could have been the result of the assemblage of smaller structures. Here we explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [α/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. The α elements deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than −2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio, the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [α/Fe] ratios. Moreover, for the first time we consider the effects of an enriched infall of gas with the same chemical abundances as the matter ejected and/or stripped from dwarf satellites of the Milky Way on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the assumed infall time-scale, and the presence of a threshold in the gas for star formation. In particular, in models with an infall time-scale for the halo around 0.8 Gyr coupled with a threshold in the surface gas density for the star formation (4 M pc−2), and the enriched infall from dwarf spheroidal satellites, the first halo stars formed show [Fe/H]>−2.4 dex. In this case, to explain [α/Fe] data for stars with [Fe/H]<−2.4 dex, we need stars formed in dSph systems.
    Original languageEnglish
    Pages (from-to)2541-2552
    Number of pages12
    JournalMonthly Notices of the Royal Astronomical Society
    Volume458
    Issue number3
    Early online date7 Mar 2016
    DOIs
    Publication statusPublished - 21 May 2016

    Keywords

    • ISM: abundances
    • Galaxy: abundances
    • Galaxy: evolution
    • Galaxy: halo

    Fingerprint

    Dive into the research topics of 'Are ancient dwarf satellites the building blocks of the Galactic halo?'. Together they form a unique fingerprint.

    Cite this