Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data

Eduard V. Chemyakin, D. Mueller, Sharon P. Burton, Alexei V. Kolgotin, Chris A. Hostetler, Richard A. Ferrare

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric
aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive
indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the “3 backscatter β 2 extinction (α)” configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested “3β 1α,” “2β 1α,” and “3β” lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties
are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center’s airborne “3β 2α” High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength
lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov’s inversion with regularization. This advanced algorithm has recently undergone development to allow automated and unsupervised processing; the arrange and average algorithm can be used as a preclassifier to further improve its speed and precision. First tests of the performance of arrange and average algorithm are encouraging. We used a set of 48 different monomodal particle size distributions, 4 real parts and 15 imaginary parts of the complex refractive index. All in all we tested 2880 different optical data sets for 0%, 10%, and 20% Gaussian measurement noise (one-standard deviation). In the case of the “3β 2α” configuration with 10% measurement noise, we retrieve the particle effective radius to within 27% for 1964 (68.2%) of the test optical data sets. The number concentration is obtained to 76%, the surface area concentration to 16%, and the volume concentration to 30% precision. The “3β” configuration performs significantly poorer. The performance of the “3β 1α” and “2β 1α” configurations is intermediate between the “3β 2α” and the “3β.”
Original languageEnglish
Pages (from-to)7252-7266
Number of pages15
JournalApplied Optics
Volume53
Issue number31
DOIs
Publication statusPublished - 23 Oct 2014

Fingerprint

Dive into the research topics of 'Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data'. Together they form a unique fingerprint.

Cite this