Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor

Daya Shankar Pandey, Saptarshi Das, Indranil Pan, James J. Leahy, Witold Kwapinski

Research output: Contribution to journalArticlepeer-review

91 Citations (Scopus)


In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHVp) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg–Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier.

Original languageEnglish
Pages (from-to)202-213
Number of pages12
JournalWaste Management
Publication statusPublished - 1 Dec 2016
Externally publishedYes


  • Artificial neural networks
  • Feed-forward multilayer perceptron
  • Fluidized bed gasifier
  • Gasification
  • Municipal solid waste


Dive into the research topics of 'Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor'. Together they form a unique fingerprint.

Cite this