TY - JOUR
T1 - Aspirin triggered 15-epi-lipoxin A4 predicts cyclo-oxygenase-2 in the lungs of LPS treated mice but not in the circulation
T2 - implications for a clinical test
AU - Kirkby, Nick
AU - Chan, M.V.
AU - Lundberg, M.H.
AU - MacKenzie, Louise
AU - Leadbeater, Phillip D.M.
AU - Milne, Ginger L.
AU - Potter, Claire M.
AU - Al-Yamani, Malak
AU - Adeyemi, Oladipupo
AU - Warner, Tim D.
AU - Mitchell, Jane A.
PY - 2013/10
Y1 - 2013/10
N2 - Inhibition of cyclooxygenase (COX)-2 increases cardiovascular deaths. Identifying a biomarker of COX-2 is desirable but difficult, since COX-1 and COX-2 ordinarily catalyze formation of an identical product, prostaglandin H2. When acetylated by aspirin, however, COX-2 (but not COX-1) can form 15(R)-HETE, which is metabolized to aspirin-triggered lipoxin (ATL), 15-epi-lipoxin A4. Here we have used COX-1- and COX-2-knockout mice to establish whether plasma ATL could be used as a biomarker of vascular COX-2 in vivo. Vascular COX-2 was low but increased by LPS (10 mg/kg; i.p). Aspirin (10 mg/kg; i.v.) inhibited COX-1, measured as blood thromboxane and COX-2, measured as lung PGE2. Aspirin also increased the levels of ATL in the lungs of LPS-treated wild-type C57Bl6 mice (vehicle: 25.5±9.3 ng/ml; 100 mg/kg: 112.0±7.4 ng/ml; P<0.05). Despite this, ATL was unchanged in plasma after LPS and aspirin. This was true in wild-type as well as COX-1-/- and COX-2-/- mice. Thus, in mice in which COX-2 has been induced by LPS treatment, aspirin triggers detectable 15-epi-lipoxin A4 in lung tissue, but not in plasma. This important study is the first to demonstrate that while ATL can be measured in tissue, plasma ATL is not a biomarker of vascular COX-2 expression
AB - Inhibition of cyclooxygenase (COX)-2 increases cardiovascular deaths. Identifying a biomarker of COX-2 is desirable but difficult, since COX-1 and COX-2 ordinarily catalyze formation of an identical product, prostaglandin H2. When acetylated by aspirin, however, COX-2 (but not COX-1) can form 15(R)-HETE, which is metabolized to aspirin-triggered lipoxin (ATL), 15-epi-lipoxin A4. Here we have used COX-1- and COX-2-knockout mice to establish whether plasma ATL could be used as a biomarker of vascular COX-2 in vivo. Vascular COX-2 was low but increased by LPS (10 mg/kg; i.p). Aspirin (10 mg/kg; i.v.) inhibited COX-1, measured as blood thromboxane and COX-2, measured as lung PGE2. Aspirin also increased the levels of ATL in the lungs of LPS-treated wild-type C57Bl6 mice (vehicle: 25.5±9.3 ng/ml; 100 mg/kg: 112.0±7.4 ng/ml; P<0.05). Despite this, ATL was unchanged in plasma after LPS and aspirin. This was true in wild-type as well as COX-1-/- and COX-2-/- mice. Thus, in mice in which COX-2 has been induced by LPS treatment, aspirin triggers detectable 15-epi-lipoxin A4 in lung tissue, but not in plasma. This important study is the first to demonstrate that while ATL can be measured in tissue, plasma ATL is not a biomarker of vascular COX-2 expression
U2 - 10.1096/fj.12-215533
DO - 10.1096/fj.12-215533
M3 - Article
SN - 0892-6638
VL - 27
SP - 3938
EP - 3946
JO - FASEB Journal
JF - FASEB Journal
ER -