Abstract
Automatic generation of level maps is a popular form of automatic content generation. In this study, a recently developed technique employing the do what’s possible representation is used to create open-ended level maps. Generation of the map can continue indefinitely, yielding a highly scalable representation. A parameter study is performed to find good parameters for the evolutionary algorithm used to locate high quality map generators. Variations on the technique are presented, demonstrating its versatility, and an algorithmic variant is given that both improves performance and changes the character of maps located. The ability of the map to adapt to different regions where the map is permitted to occupy space are also tested.
Original language | English |
---|---|
Title of host publication | 2019 IEEE Conference on Games (CoG) |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 1-8 |
Number of pages | 8 |
ISBN (Print) | 978-1-7281-1885-7 |
DOIs | |
Publication status | Published - 23 Aug 2019 |
Event | 2019 IEEE Conference on Games (CoG) - London, UK Duration: 20 Aug 2019 → 23 Aug 2019 |
Conference
Conference | 2019 IEEE Conference on Games (CoG) |
---|---|
Period | 20/08/19 → 23/08/19 |
Keywords
- Computer hacking
- Sociology
- Statistics
- Automata
- Evolutionary computation
- Generators
- Games