TY - JOUR
T1 - B-fields in Star-Forming Region Observations (BISTRO)
T2 - Magnetic Fields in the Filamentary Structures of Serpens Main
AU - BISTRO
AU - Kwon, Woojin
AU - Pattle, Kate
AU - Sadavoy, Sarah
AU - Hull, Charles L. H.
AU - Johnstone, Doug
AU - Ward-Thompson, Derek
AU - Francesco, James Di
AU - Koch, Patrick M.
AU - Furuya, Ray
AU - Doi, Yasuo
AU - Gouellec, Valentin J. M. Le
AU - Hwang, Jihye
AU - Lyo, A-Ran
AU - Soam, Archana
AU - Tang, Xindi
AU - Hoang, Thiem
AU - Kirchschlager, Florian
AU - Eswaraiah, Chakali
AU - Fanciullo, Lapo
AU - Kim, Kyoung Hee
AU - Onaka, Takashi
AU - Könyves, Vera
AU - Kang, Ji-hyun
AU - Lee, Chang Won
AU - Tamura, Motohide
AU - Bastien, Pierre
AU - Hasegawa, Tetsuo
AU - Lai, Shih-Ping
AU - Qiu, Keping
AU - Berry, David
AU - Arzoumanian, Doris
AU - Bourke, Tyler L.
AU - Byun, Do-Young
AU - Chen, Wen Ping
AU - Chen, Huei-Ru Vivien
AU - Chen, Mike
AU - Chen, Zhiwei
AU - Ching, Tao-Chung
AU - Cho, Jungyeon
AU - Choi, Yunhee
AU - Choi, Minho
AU - Chrysostomou, Antonio
AU - Chung, Eun Jung
AU - Coudé, Simon
AU - Dai, Sophia
AU - Diep, Pham Ngoc
AU - Duan, Yan
AU - Duan, Hao-Yuan
AU - Gledhill, Tim
AU - Parsons, Harriet
N1 - © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/
PY - 2022/2/22
Y1 - 2022/2/22
N2 - We present 850 $\mu$m polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields In STar-forming Region Observations (BISTRO) survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less dense filamentary structures where $N_{H_2} < 0.93\times 10^{22}$ cm$^{-2}$ (magnetic fields perpendicular to density gradients), while being perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at $N_{H_2} \approx 4.6 \times 10^{22}$ cm$^{-2}$. This can be interpreted as a signature of core formation. At $N_{H_2} \approx 16 \times 10^{22}$ cm$^{-2}$ magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments ($B_{POS} = 60-300~\mu$G)) using the Davis-Chandrasekhar-Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities.
AB - We present 850 $\mu$m polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields In STar-forming Region Observations (BISTRO) survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less dense filamentary structures where $N_{H_2} < 0.93\times 10^{22}$ cm$^{-2}$ (magnetic fields perpendicular to density gradients), while being perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at $N_{H_2} \approx 4.6 \times 10^{22}$ cm$^{-2}$. This can be interpreted as a signature of core formation. At $N_{H_2} \approx 16 \times 10^{22}$ cm$^{-2}$ magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments ($B_{POS} = 60-300~\mu$G)) using the Davis-Chandrasekhar-Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities.
KW - astro-ph.GA
KW - astro-ph.SR
U2 - 10.3847/1538-4357/ac4bbe
DO - 10.3847/1538-4357/ac4bbe
M3 - Article
SN - 0004-637X
VL - 926
SP - 123
EP - 135
JO - The Astrophysical Journal
JF - The Astrophysical Journal
ER -