Carbon-Nanodot Solar Cells from Renewable Precursors

Adam Marinovic, Lim S. Kiat, Steve Dunn, Maria Magdalena Titirici, Joe Briscoe

    Research output: Contribution to journalArticlepeer-review

    34 Citations (Scopus)
    20 Downloads (Pure)

    Abstract

    It has recently been shown that waste biomass can be converted into a wide range of functional materials, including those with desirable optical and electronic properties, offering the opportunity to find new uses for these renewable resources. Photovoltaics is one area in which finding the combination of abundant, low-cost and non-toxic materials with the necessary functionality can be challenging. In this paper the performance of carbon nanodots derived from a wide range of biomaterials obtained from different biomass sources as sensitisers for TiO2-based nanostructured solar cells was compared; polysaccharides (chitosan and chitin), monosaccharide (d-glucose), amino acids (l-arginine and l-cysteine) and raw lobster shells were used to produce carbon nanodots through hydrothermal carbonisation. The highest solar power conversion efficiency (PCE) of 0.36 % was obtained by using l-arginine carbon nanodots as sensitisers, whereas lobster shells, as a model source of chitin from actual food waste, showed a PCE of 0.22 %. By comparing this wide range of materials, the performance of the solar cells was correlated with the materials characteristics by carefully investigating the structural and optical properties of each family of carbon nanodots, and it was shown that the combination of amine and carboxylic acid functionalisation is particularly beneficial for the solar-cell performance.

    Original languageEnglish
    Pages (from-to)1004-1013
    Number of pages10
    JournalChemSusChem
    Volume10
    Issue number5
    Early online date14 Feb 2017
    DOIs
    Publication statusPublished - 9 Mar 2017

    Keywords

    • biomass
    • carbon quantum dots
    • food waste
    • hydrothermal carbonisation
    • photovoltaic

    Fingerprint

    Dive into the research topics of 'Carbon-Nanodot Solar Cells from Renewable Precursors'. Together they form a unique fingerprint.

    Cite this