Catching Element Formation In The Act

Chris L. Fryer, Frank Timmes, Aimee L. Hungerford, Aaron Couture, Fred Adams, Wako Aoki, Almudena Arcones, David Arnett, Katie Auchettl, Melina Avila, Carles Badenes, Eddie Baron, Andreas Bauswein, John Beacom, Jeff Blackmon, Stephane Blondin, Peter Bloser, Steve Boggs, Alan Boss, Terri BrandtEduardo Bravo, Ed Brown, Peter Brown, Steve Bruenn Carl Budtz-Jorgensen, Eric Burns, Alan Calder, Regina Caputo, Art Champagne, Roger Chevalier, Alessandro Chieffi, Kelly Chipps, David Cinabro, Ondrea Clarkson, Don Clayton, Alain Coc, Devin Connolly, Charlie Conroy, Benoit Cote, Sean Couch, Nicolas Dauphas, Richard James deBoer, Catherine Deibel, Pavel Denisenkov, Steve Desch, Luc Dessart, Roland Diehl, Carolyn Doherty, Inma Dominguez, Subo Dong, Vikram Dwarkadas, Doreen Fan, Brian Fields, Carl Fields, Alex Filippenko, Robert Fisher, Francois Foucart, Claes Fransson, Carla Frohlich, George Fuller, Brad Gibson, Viktoriya Giryanskaya, Joachim Gorres, Stephane Goriely, Sergei Grebenev, Brian Grefenstette, Evan Grohs, James Guillochon, Alice Harpole, Chelsea Harris, J. Austin Harris, Fiona Harrison, Dieter Hartmann, Masa-aki Hashimoto, Alexander Heger, Margarita Hernanz, Falk Herwig, Raphael Hirschi, Raphael William Hix, Peter Hoflich, Robert Hoffman, Cole Holcomb, Eric Hsiao, Christian Iliadis, Agnieszka Janiuk, Thomas Janka, Anders Jerkstrand, Lucas Johns, Samuel Jones, Jordi Jose, Toshitaka Kajino, Amanda Karakas, Platon Karpov, Dan Kasen, Carolyn Kierans, Marc Kippen, Oleg Korobkin, Chiaki Kobayashi, Cecilia Kozma, Saha Krot, Pawan Kumar, Irfan Kuvvetli, Alison Laird, Martin Laming, Josefin Larsson, John Lattanzio, James Lattimer, Mark Leising, Annika Lennarz, Eric Lentz, Marco Limongi, Jonas Lippuner, Eli Livne, Nicole Lloyd-Ronning, Richard Longland, Laura A. Lopez, Maria Lugaro, Alexander Lutovinov, Kristin Madsen, Chris Malone, Francesca Matteucci, Julie McEnery, Zach Meisel, Bronson Messer, Brian Metzger, Bradley Meyer, Georges Meynet, Anthony Mezzacappa, Jonah Miller, Richard Miller, Peter Milne, Wendell Misch, Lee Mitchell, Philipp Mosta, Yuko Motizuki, Bernhard Muller, Matthew Mumpower, Jeremiah Murphy, Shigehiro Nagataki, Ehud Nakar, Ken'ichi Nomoto, Peter Nugent, Filomena Nunes, Brian O'Shea, Uwe Oberlack, Steven Pain, Lucas Parker, Albino Perego, Marco Pignatari, Gabriel Martinez Pinedo, Tomasz Plewa, Dovi Poznanski, William Priedhorsky, Boris Pritychenko, David Radice, Enrico Ramirez-Ruiz, Thomas Rauscher, Sanjay Reddy, Ernst Rehm, Rene Reifarth, Debra Richman, Paul Ricker, Nabin Rijal, Luke Roberts, Friedrich Ropke, Stephan Rosswog, Ashley J. Ruiter, Chris Ruiz, Daniel Wolf Savin, Hendrik Schatz, Dieter Schneider, Josiah Schwab, Ivo Seitenzahl, Ken Shen, Thomas Siegert, Stuart Sim, David Smith, Karl Smith, Michael Smith, Jesper Sollerman, Trevor Sprouse, Artemis Spyrou, Sumner Starrfield, Andrew Steiner, Andrew W. Strong, Tuguldur Sukhbold, Nick Suntzeff, Rebecca Surman, Toru Tanimori, Lih-Sin The, Friedrich-Karl Thielemann, Alexey Tolstov, Nozomu Tominaga, John Tomsick, Dean Townsley, Pelagia Tsintari, Sergey Tsygankov, David Vartanyan, Tonia Venters, Tom Vestrand, Jacco Vink, Roni Waldman, Lifang Wang, Xilu Wang, MacKenzie Warren, Christopher West, J. Craig Wheeler, Michael Wiescher, Christoph Winkler, Lisa Winter, Bill Wolf, Richard Woolf, Stan Woosley, Jin Wu, Chris Wrede, Shoichi Yamada, Patrick Young, Remco Zegers, Michael Zingale, Simon Portegies Zwart

Research output: Contribution to journalArticlepeer-review

12 Downloads (Pure)

Abstract

Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.
Original languageEnglish
Pages (from-to)1-14
Number of pages14
JournalThe American Astronomical Society
Volume51
Issue number3
Early online date8 Feb 2019
DOIs
Publication statusPublished - 31 Mar 2019

Keywords

  • astro-ph.HE

Fingerprint

Dive into the research topics of 'Catching Element Formation In The Act'. Together they form a unique fingerprint.

Cite this