CHIMPS: Physical properties of molecular clumps across the inner Galaxy

A. J. Rigby, T. J. T. Moore, D. J. Eden, J. S. Urquhart, S. E. Ragan, N. Peretto, R. Plume, M. A. Thompson, M. J. Currie, G. Park

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
6 Downloads (Pure)


The latest generation of high-angular-resolution unbiased Galactic plane surveys in molecular-gas tracers are enabling the interiors of molecular clouds to be studied across a range of environments. The CHIMPS survey simultaneously mapped a sector of the inner Galactic plane, within 27.8 <l <46.2 deg and |b| <0.5 deg, in 13CO and C18O (3-2) at 15 arcsec resolution. The combination of CHIMPS data with 12CO (3-2) data from the COHRS survey has enabled us to perform a voxel-by-voxel local-thermodynamic-equilibrium analysis, determining the excitation temperature, optical depth, and column density of 13CO at each l,b,v position. Distances to discrete sources identified by FellWalker in the 13CO (3-2) emission maps were determined, allowing the calculation of numerous physical properties of the sources, and we present the first source catalogues in this paper. We find that, in terms of size and density, the CHIMPS sources represent an intermediate population between large-scale molecular clouds identified by CO and dense clumps seen in dust emission, and therefore represent the bulk transition from the diffuse to the dense phase of molecular gas. We do not find any significant systematic variations in the masses, column densities, virial parameters, excitation temperature, or the turbulent pressure over the range of Galactocentric distance probed, but we do find a shallow increase in the mean volume density with increasing Galactocentric distance. We find that inter-arm clumps have significantly narrower linewidths, and lower virial parameters and excitation temperatures than clumps located in spiral arms. When considering the most reliable distance-limited subsamples, the largest variations occur on the clump-to-clump scale, echoing similar recent studies that suggest that the star-forming process is largely insensitive to the Galactic-scale environment, at least within the inner disc.
Original languageEnglish
Article numberA58
Number of pages24
JournalAstronomy & Astrophysics
Early online date27 Nov 2019
Publication statusPublished - 1 Dec 2019


  • astro-ph.GA


Dive into the research topics of 'CHIMPS: Physical properties of molecular clumps across the inner Galaxy'. Together they form a unique fingerprint.

Cite this