Abstract
We investigate boundary conditions for the nonlinear sigma model on the compact symmetric space $G/H$, where $H \subset G$ is the subgroup fixed by an involution $\sigma$ of $G$. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions in correspondence with involutions which commute with $\sigma$. Applied to $SO(3)/SO(2)$, the nonlinear sigma model on $S^2$, these yield the great circles as boundary submanifolds. Applied to $G \times G/G$, they reproduce known results for the principal chiral model
Original language | English |
---|---|
Pages (from-to) | 221-227 |
Journal | Physical Letters B |
Volume | 588 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - May 2004 |
Keywords
- hep-th