Cluster Adjacency for m=2 Yangian Invariants

Tomasz Lukowski, Matteo Parisi, Marcus Spradlin, Anastasia Volovich

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
26 Downloads (Pure)

Abstract

We classify the rational Yangian invariants of the $m=2$ toy model of $\mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $\mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariants for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra.
Original languageEnglish
Article number158
JournalJournal of High Energy Physics (JHEP)
Volume2019
Issue number10
DOIs
Publication statusPublished - 14 Oct 2019

Keywords

  • hep-th
  • Scattering Amplitudes
  • Supersymmetric Gauge Theory

Fingerprint

Dive into the research topics of 'Cluster Adjacency for m=2 Yangian Invariants'. Together they form a unique fingerprint.

Cite this