Abstract
The identification of cis-regulatory binding sites in DNA is a difficult problem in computational biology. To obtain a full understanding of the complex machinery embodied in genetic regulatory networks it is necessary to know both the identity of the regulatory transcription factors together with the location of their binding sites in the genome. We show that using an SVM together with data sampling to classify the combination of the results of individual algorithms specialised for the prediction of binding site locations, can produce significant improvements upon the original algorithms. The resulting classifier produces fewer false positive predictions and so reduces the expensive experimental procedure of verifying the predictions.
Original language | English |
---|---|
Journal | Proceedings of the |
Volume | 2008 |
Publication status | Published - 2008 |