TY - JOUR
T1 - Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor
AU - Katsaros, Giannis
AU - Sommersacher, Peter
AU - Retschitzegger, Stefan
AU - Kienzl, Norbert
AU - Tassou, Savvas A.
AU - Pandey, Daya Shankar
N1 - Funding Information:
The authors would like to express their gratitude and appreciation to the European Commission for the financial support of the experimental campaign through the BRISK2 project (grant agreement number 731101 ) and to the staff of the BEST- Bioenergy and Sustainable Technologies for hosting the experimental campaign. This work is supported by the Engineering and Physical Sciences Research Council (EPSRC, EP/P004636/1, UK) and the Global Challenges Research Fund (GCRF/R5004, UK). The financial support from the EPSRC and GCRF are gratefully acknowledged.
Publisher Copyright:
© 2020
PY - 2021/2/15
Y1 - 2021/2/15
N2 - Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.
AB - Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.
UR - http://www.scopus.com/inward/record.url?scp=85092251119&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2020.119310
DO - 10.1016/j.fuel.2020.119310
M3 - Article
AN - SCOPUS:85092251119
SN - 0016-2361
VL - 286
JO - Fuel
JF - Fuel
M1 - 119310
ER -