Abstract
Both numerical and experimental studies were conducted to evaluate the performance of an omni-flow wind turbine designed to provide renewable electricity on the top of urban buildings like skyscrapers. The numerical approach was based on Finite Volume Method (FVM) and the turbulence flow was studied with several commonly used Reynolds-averaged Navier–Stokes turbulence models. The results of the study were evaluated with the wind tunnel test results over a range of tip speed ratios. The numerical results showed the effect of blade number on both power output and starting capability. Although both the power and torque coefficient were improved significantly by the optimisation of the blade number, there was only a slight change when the blade number was greater than twenty. The results from wind tunnel testing also showed excellent starting capability with a starting wind velocity as low as 1.6 m/s. A numerical simulation was also conducted for the wind turbine working under non-uniform flow conditions. The numerical results have shown that the peak power coefficient of such a wind turbine under non-uniform flow, was lower than that under the uniform flow. Additionally, the applied thrust on a blade was subject to frequent and periodical changes. However, the effect of the change of thrust in magnitude and frequency was not significant. Therefore the omni-flow wind turbine has the potential to meet the challenge of unpredictable wind velocity and direction as a consequence of the urban environment.
Original language | English |
---|---|
Pages (from-to) | 74-83 |
Journal | Applied Energy |
Volume | 146 |
Early online date | 4 Mar 2015 |
DOIs | |
Publication status | Published - 15 May 2015 |
Keywords
- Wind turbine
- Non-uniform flow
- Wind tunnel
- CFD
- Impulse turbine
- Omni-flow wind energy system