TY - JOUR
T1 - Deep Narrowband Photometry of the M101 Group: Strong-line Abundances of 720 H ii Regions
AU - Garner, Ray
AU - Mihos, J. Christopher
AU - Harding, Paul
AU - Watkins, Aaron E.
AU - McGaugh, Stacy S.
N1 - © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/
PY - 2022/12/22
Y1 - 2022/12/22
N2 - We present deep, narrowband imaging of the nearby spiral galaxy M101 and its satellites to analyze the oxygen abundances of their H ii regions. Using Case Western Reserve University’s Burrell Schmidt telescope, we add to the narrowband data set of the M101 Group, consisting of Hα, Hβ, and [O iii] emission lines and the blue [O ii] λ3727 emission line for the first time. This allows for complete spatial coverage of the oxygen abundance of the entire M101 Group. We used the strong-line ratio R 23 to estimate oxygen abundances for the H ii regions in our sample, utilizing three different calibration techniques to provide a baseline estimate of the oxygen abundances. This results in ∼650 H ii regions for M101, 10 H ii regions for NGC 5477, and ∼60 H ii regions for NGC 5474, the largest sample for this Group to date. M101 shows a strong abundance gradient, while the satellite galaxies present little or no gradient. There is some evidence for a flattening of the gradient in M101 beyond R ∼ 14 kpc. Additionally, M101 shows signs of azimuthal abundance variations to the west and southwest. The radial and azimuthal abundance variations in M101 are likely explained by an interaction it had with its most massive satellite, NGC 5474, ∼300 Myr ago combined with internal dynamical effects such as corotation.
AB - We present deep, narrowband imaging of the nearby spiral galaxy M101 and its satellites to analyze the oxygen abundances of their H ii regions. Using Case Western Reserve University’s Burrell Schmidt telescope, we add to the narrowband data set of the M101 Group, consisting of Hα, Hβ, and [O iii] emission lines and the blue [O ii] λ3727 emission line for the first time. This allows for complete spatial coverage of the oxygen abundance of the entire M101 Group. We used the strong-line ratio R 23 to estimate oxygen abundances for the H ii regions in our sample, utilizing three different calibration techniques to provide a baseline estimate of the oxygen abundances. This results in ∼650 H ii regions for M101, 10 H ii regions for NGC 5477, and ∼60 H ii regions for NGC 5474, the largest sample for this Group to date. M101 shows a strong abundance gradient, while the satellite galaxies present little or no gradient. There is some evidence for a flattening of the gradient in M101 beyond R ∼ 14 kpc. Additionally, M101 shows signs of azimuthal abundance variations to the west and southwest. The radial and azimuthal abundance variations in M101 are likely explained by an interaction it had with its most massive satellite, NGC 5474, ∼300 Myr ago combined with internal dynamical effects such as corotation.
KW - 310
KW - Galaxies and Cosmology
UR - http://www.scopus.com/inward/record.url?scp=85145361457&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/aca27a
DO - 10.3847/1538-4357/aca27a
M3 - Article
SN - 0004-637X
VL - 941
SP - 1
EP - 19
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
M1 - 182
ER -