Abstract
Absence of functional FMRP causes Fragile X syndrome. Abnormalities in synaptic processes in the cerebral cortex and hippocampus contribute to cognitive deficits in Fragile X patients. So far, the potential roles of cerebellar deficits have not been investigated. Here, we demonstrate that both global and Purkinje cell-specific knockouts of Fmr1 show deficits in classical delay eye-blink conditioning in that the percentage of conditioned responses as well as their peak amplitude and peak velocity are reduced. Purkinje cells of these mice show elongated spines and enhanced LTD induction at the parallel fiber synapses that innervate these spines. Moreover, Fragile X patients display the same cerebellar deficits in eye-blink conditioning as the mutant mice. These data indicate that a lack of FMRP leads to cerebellar deficits at both the cellular and behavioral levels and raise the possibility that cerebellar dysfunctions can contribute to motor learning deficits in Fragile X patients.
Original language | English |
---|---|
Pages (from-to) | 339-52 |
Number of pages | 14 |
Journal | Neuron |
Volume | 47 |
Issue number | 3 |
DOIs | |
Publication status | Published - 4 Aug 2005 |
Keywords
- Cerebellum
- Conditioning, Eyelid
- Dendritic spines
- Fragile X Mental Retardation Protein
- Fragile X Syndrome
- Gene Deletion
- Human patients
- Long-Term Synaptic Depression
- Mice, Knockout
- Models, Neurological
- Computational model
- Purkinje Cells
- motor learning