Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation: the impact of AGN feedback

S. Peirani, Y. Dubois, M. Volonteri, J.E.G. Devriendt, K. Bundy, J. Silk, C. Pichon, S. Kaviraj, R. Gavazzi, M. Habouzit

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)
57 Downloads (Pure)

Abstract

Using a suite of three large cosmological hydrodynamical simulations, Horizon-AGN, Horizon-noAGN (no AGN feedback) and Horizon-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, H_AGN, H_noAGN and H_DM) significantly evolve with time. More specifically, at high redshift (z~5), the mean central density profiles of H_AGN and H_noAGN dark matter haloes tend to be much steeper than their H_DM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z~1.5, these mean halo density profiles in H_AGN have flattened, pummelled by powerful AGN activity ("quasar mode"): the integrated inner mass difference gaps with H_noAGN haloes have widened, and those with H_DM haloes have narrowed. Fast forward 9.5 billion years, down to z=0, and the trend reverses: H_AGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ("radio mode"), and the gaps in integrated central mass difference with H_noAGN and H_DM close and broaden respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations. As both dark matter and stellar inner density profiles respond quite sensitively to the presence of a central AGN, there is hope that future observational determinations of these quantities can be used constrain AGN feedback models.
Original languageEnglish
Article numberstx2099
Pages (from-to)2153-2169
Number of pages17
JournalMonthly Notices of the Royal Astronomical Society
Volume472
Issue number2
Early online date16 Aug 2017
DOIs
Publication statusPublished - 1 Dec 2017

Keywords

  • astro-ph.GA

Fingerprint

Dive into the research topics of 'Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation: the impact of AGN feedback'. Together they form a unique fingerprint.

Cite this