Abstract
This study presents VIBRANT: VIbration BehaviouR ANalysis Tool, a numerical tool developed for analysing the dynamic behaviour of complicated mechanical systems. The tool uses Python and Abaqus, employing time-marching algorithms to perform individual time domain simulations under harmonic excitation of certain frequencies until a steady state is reached to predict frequency domain behaviour. Hence, each monoharmonic excitation can be performed independently; the tool can parallelise the computations to shorten the computational time. This software enables the handling of various systems modelled by Abaqus, adeptly addressing numerous nonlinearities and conditions, expanding the capabilities of the software significantly. Properties of interest are measured for each frequency step of the simulation set. To validate and illustrate the capabilities of VIBRANT, two examples are presented. The first example is a beam with a dry friction contact element attached, and the second is a bladed disc system with underplatform dampers in aircraft engine turbines. Parametric studies evaluate the influence of the variation of parameters, such as excitation amplitudes and coefficient of friction, on the system’s dynamics. This research extends the scope of computational modelling in mechanical and aerospace engineering and provides a foundational tool that can be implemented to validate future aircraft engine designs.
Original language | English |
---|---|
Title of host publication | Proceedings of ASME Turbo Expo 2024 |
Subtitle of host publication | Turbomachinery Technical Conference and Exposition |
Place of Publication | London, United Kingdom |
Publisher | American Society of Mechanical Engineers (ASME) |
Number of pages | 13 |
ISBN (Electronic) | 9780791888032 |
DOIs | |
Publication status | E-pub ahead of print - 28 Aug 2024 |
Event | Turbo Expo 2024: Turbomachinery Technical Conference & Exposition - London, United Kingdom Duration: 24 Jun 2024 → 28 Jun 2024 https://event.asme.org/Turbo-Expo-2024 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Publisher | ASME |
Volume | 10B |
Conference
Conference | Turbo Expo 2024 |
---|---|
Country/Territory | United Kingdom |
City | London |
Period | 24/06/24 → 28/06/24 |
Internet address |
Keywords
- Numerical analysis
- aeroengine
- nonlinear mechanical systems
- time-marching
- turbine blade
- underplatform damper