TY - JOUR
T1 - Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions
AU - Cheng, Zeyuan
AU - Tao, Zhi
AU - Zhu, Jianqin
AU - Wu, Hongwei
N1 - This document is the Accepted Manuscript version of the following article: Zeyuan Cheng, Zhi Tao, Jianqin Zhu, and Hongwei Wu, ‘Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions’, Applied Thermal Engineering, Vol. 134: 39-53, April 2018. Under embargo until 31 January 2019.
The final, definitive version is available online at: https://doi.org/10.1016/j.applthermaleng.2018.01.105
PY - 2018/4/1
Y1 - 2018/4/1
N2 - This article presented a numerical investigation of supercritical heat transfer of the hydrocarbon fuel in a series of horizontal tubes with different diameters. The Reynolds averaging equations of mass, momentum and energy with the LS low-Reynolds number turbulence model have been solved using the pressure-based segregated solver based on the finite volume method. For the purpose of comparison, a four-species surrogate model and a ten-species surrogate model of the aviation kerosene RP-3 (Rocket Propellant 3) were tested against the published experimental data. In the current study, the tube diameter varied from 2 mm to 10 mm and the pressure was 3 MPa with heat flux to mass flux ratios ranging from 0.25 to 0.71 kJ/kg. It was found that the buoyancy has significant effect on the wall temperature non-uniformity in the horizontal tube. With the increase of the diameter, the buoyancy effect enhances and the thermal-induced acceleration effect reduces. The buoyancy effect makes wall temperature at the top and bottom generatrices of the horizontal tube increase and decrease, respectively. Due to the coupled effect of the buoyancy and thermal-induced acceleration caused by the significant change of the properties, as the diameter increases, the heat transfer deteriorates dramatically at the top generatrix but remains almost unchanged at the bottom generatrix at high heat flux to mass flux ratio. Heat transfer enhancement is observed at low heat flux to mass flux ratio when the tube diameter is less than 6 mm. Moreover, the safety analysis has been performed in order to optimally design the supercritical cooling system.
AB - This article presented a numerical investigation of supercritical heat transfer of the hydrocarbon fuel in a series of horizontal tubes with different diameters. The Reynolds averaging equations of mass, momentum and energy with the LS low-Reynolds number turbulence model have been solved using the pressure-based segregated solver based on the finite volume method. For the purpose of comparison, a four-species surrogate model and a ten-species surrogate model of the aviation kerosene RP-3 (Rocket Propellant 3) were tested against the published experimental data. In the current study, the tube diameter varied from 2 mm to 10 mm and the pressure was 3 MPa with heat flux to mass flux ratios ranging from 0.25 to 0.71 kJ/kg. It was found that the buoyancy has significant effect on the wall temperature non-uniformity in the horizontal tube. With the increase of the diameter, the buoyancy effect enhances and the thermal-induced acceleration effect reduces. The buoyancy effect makes wall temperature at the top and bottom generatrices of the horizontal tube increase and decrease, respectively. Due to the coupled effect of the buoyancy and thermal-induced acceleration caused by the significant change of the properties, as the diameter increases, the heat transfer deteriorates dramatically at the top generatrix but remains almost unchanged at the bottom generatrix at high heat flux to mass flux ratio. Heat transfer enhancement is observed at low heat flux to mass flux ratio when the tube diameter is less than 6 mm. Moreover, the safety analysis has been performed in order to optimally design the supercritical cooling system.
KW - Diameter
KW - Heat transfer
KW - Horizontal tube
KW - Hydrocarbon
KW - Supercritical
UR - http://www.scopus.com/inward/record.url?scp=85041409535&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2018.01.105
DO - 10.1016/j.applthermaleng.2018.01.105
M3 - Article
SN - 1359-4311
VL - 134
SP - 39
EP - 53
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
ER -