Discrimination of intentional and random motion paths by pigeons

K. Goto, S.E. Lea, W. Dittrich

    Research output: Contribution to journalArticlepeer-review

    13 Citations (Scopus)

    Abstract

    Twelve pigeons (Columba livia) were trained on a go/no-go schedule to discriminate between two kinds of movement patterns of dots, which to human observers appear to be "intentional" and "non-intentional" movements. In experiment 1, the intentional motion stimulus contained one dot (a "wolf") that moved systematically towards another dot as though stalking it, and three distractors ("sheep"). The non-intentional motion stimulus consisted of four distractors but no stalker. Birds showed some improvement of discrimination as the sessions progressed, but high levels of discrimination were not reached. In experiment 2, the same birds were tested with different stimuli. The same parameters were used but the number of intentionally moving dots in the intentional motion stimulus was altered, so that three wolves stalked one sheep. Despite the enhanced difference of movement patterns, the birds did not show any further improvement in discrimination. However, birds for which the non-intentional stimulus was associated with reward showed a decline in discrimination. These results indicated that pigeons can discriminate between stimuli that do and do not contain an element that human observer see as moving intentionally. However, as no feature-positive effect was found in experiment 1, it is assumed that pigeons did not perceive or discriminate these stimuli on the basis that the intentional stimuli contained a feature that the non-intentional stimuli lacked, though the convergence seen in experiment 2 may have been an effective feature for the pigeons. Pigeons seem to be able to recognise some form of multiple simultaneously goal-directed motions, compared to random motions, as a distinctive feature, but do not seem to use simple "intentional" motion paths of two geometrical figures, embedded in random motions, as a feature whose presence or absence differentiates motion displays.
    Original languageEnglish
    Pages (from-to)119-127
    JournalAnimal Cognition
    Volume5
    Issue number3
    DOIs
    Publication statusPublished - 2002

    Fingerprint

    Dive into the research topics of 'Discrimination of intentional and random motion paths by pigeons'. Together they form a unique fingerprint.

    Cite this